
DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Approximate Solutions to
Markov Decision Processes

Geoffrey J. Gordon

June 1999
CMU-CS-99-143

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Tom Mitchell, Chair

Andrew Moore
John Lafferty

Satinder Singh Baveja, AT&T Labs Research

© Copyright Geoffrey J. Gordon, 1999

This research is sponsored in part by the Defense Advanced Research Projects
Agency (DARPA) under Contract Nos. F30602-97-1-0215 and F33615-93-1-1330, by
the National Science Foundation (NSF) under Grant No. BES-9402439, and by an
NSF Graduate Research Fellowship. The views and conclusions expressed in this
publication are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of DARPA, NSF, or the U.S. government.

DTIC QUALITY INSPECTED 4

Keywords: machine learning, reinforcement learning, dynamic program-
ming, Markov decision processes (MDPs), linear programming, convex program-
ming, function approximation, worst-case learning, regret bounds, statistics,
fitted value iteration, convergence of numerical methods

vVt
School of Computer Science

DOCTORAL THESIS
in the field of

COMPUTER SCIENCE

Approximate Solutions to Markov Decision
Processes

GEOFFREY J. GORDON

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED

DEPARTMENT HEAD

"LC H«. or iw

ihim
DATE

DATE

APPRO

T^ DEAN 7Ay ?? DATE

Abstract

One of the basic problems of machine learning is deciding how to act in an
uncertain world. For example, if I want my robot to bring me a cup of coffee, it
must be able to compute the correct sequence of electrical impulses to send to
its motors to navigate from the coffee pot to my office. In fact, since the results
of its actions are not completely predictable, it is not enough just to compute
the correct sequence; instead the robot must sense and correct for deviations
from its intended path.

In order for any machine learner to act reasonably in an uncertain environ-
ment, it must solve problems like the above one quickly and reliably. Unfortu-
nately, the world is often so complicated that it is difficult or impossible to find
the optimal sequence of actions to achieve a given goal. So, in order to scale
our learners up to real-world problems, we usually must settle for approximate
solutions.

One representation for a learner's environment and goals is a Markov decision
process or MDP. MDPs allow us to represent actions that have probabilistic
outcomes, and to plan for complicated, temporally-extended goals. An MDP
consists of a set of states that the environment can be in, together with rules
for how the environment can change state and for what the learner is supposed
to do.

One way to approach a large MDP is to try to compute an approximation
to its optimal state evaluation function, the function which tells us how much
reward the learner can be expected to achieve if the world is in a particular
state. If the approximation is good enough, we can use a shallow search to find
a good action from most states. Researchers have tried many different ways
to approximate evaluation functions. This thesis aims for a middle ground,
between algorithms that don't scale well because they use an impoverished rep-
resentation for the evaluation function and algorithms that we can't analyze
because they use too complicated a representation.

Acknowledgements

This work would not have been possible without the support of my thesis com-
mittee and the rest of the faculty at Carnegie Mellon. Thanks in particular to
my advisor Tom Mitchell and to Andrew Moore for helping me to see both the
forest and the trees, and to Tom Mitchell for finding the funding to let me work
on the interesting problems rather than the lucrative ones. Thanks also to John
Lafferty, Avrim Blum, Steven Rudich, and Satinder Singh Baveja, both for the
advice they gave me and the knowledge they taught me.

Finally, and most of all, thanks to my wife Paula for supporting me, encour-
aging me, listening to my complaints, making me laugh, laughing at my jokes,
taking the time just to sit and talk with me, and putting up with the time I
couldn't spend with her.

111

IV

Contents

1 INTRODUCTION 1
1.1 Markov decision processes , 5
1.2 MDP examples 7
1.3 Value iteration 7

FITTED VALUE ITERATION 9
2.1 Discounted processes 12

2.1.1 Approximators as mappings 13
2.1.2 Averagers 16
Nondiscounted processes 18
Converging to what? , 20
In practice 21
Experiments 24
2.5.1 Puddle world 24
2.5.2 Hill-car 26
2.5.3 Hill-car the hard way 28
Summary 30
Proofs .,,... 30
2.7.1 Can expansive approximators work? 30
2.7.2 Nondiscounted case 31
2.7.3 Error bounds 33
2.7.4 The embedded process for Q-learning 34

2.2
2.3
2.4
2.5

2.6
2.7

CONVEX ANALYSIS AND INFERENCE
3.1 The inference problem
3.2 Convex duality
3.3 Proof strategy

3.3.1 Existence , , ,
3.3.2 One-step regret
3.3.3 Amortized analysis
3.3.4 Specific bounds

3.4 Weighted Majority . .
3.5 Log loss
3.6 Generalized gradient descent

37
39
42
46
46
47
48
49
49
51
53

3.7 General regret bounds 55
3.7.1 Preliminaries 55
3.7.2 Examples 56
3.7.3 The bound 57

3.8 GGD examples 5g
3.9 Inference in exponential families 60

3.9.1 Regret bounds 60
3.9.2 A Bayesian interpretation 61

3.10 Regression problems 63
3.10.1 Matching loss functions 64
3.10.2 Regret bounds 65
3.10.3 Multidimensional outputs 66

3.11 Linear regression algorithms 67
3.12 Discussion 69

CONVEX ANALYSIS AND MDPS 71
4.1 The Bellman equations 73
4.2 The dual of the Bellman equations 74

4.2.1 Linear programming duality 74
4.2.2 LPs and convex duality , 75
4.2.3 The dual Bellman equations 78

4.3 Incremental computation 80
4.4 Soft constraints 81
4.5 A statistical interpretation 83

4.5.1 Maximum Likelihood in Exponential Families 84
4.5.2 Maximum Entropy and Duality 85
4.5.3 Relationship to linear programming and MDPs 87

4.6 Introducing approximation 87
4.6.1 A first try 88
4.6.2 Approximating flows as well as values 89
4.6.3 An analogy 90
4.6.4 Open problems 91

4.7 Implementation 92
4.7.1 Overview 92
4.7.2 Details 93

4.8 Experiments 99
4.8.1 TinyMDP 99
4.8.2 Tetris 100
4.8.3 Hill-car '.'.'.'.'. 103

4.9 Discussion 105

RELATED WORK 107
5.1 Discrete problems 109
5.2 Continuous problems , no

5.2.1 Linear-Quadratic-Gaussian MDPs no
5.2.2 Continuous time ,,,,,,,, 110

VI

5.2.3 Linearity in controls Ill
5.3 Approximation 114

5.3.1 State aggregation 114
5.3.2 Interpolated value iteration 115
5.3.3 Linear programming 115
5.3.4 Least squares 115
5.3.5 Collocation and Galkerin methods 117
5.3.6 Squared Bellman error 119
5.3.7 Multi-step methods 122
5.3.8 Stopping problems 123
5.3.9 Approximate policy iteration , 124
5.3.10 Policies without values 124
5.3.11 Linear-quadratic-Gaussian approximations 124

5.4 Incremental algorithms 125
5.4.1 TD(A) 125
5.4.2 Q-learning 126

5.5 Other methods 127
5.6 Summary 128

6 SUMMARY OF CONTRIBUTIONS 131

vn

Vlll

Chapter 1

INTRODUCTION

One of the basic problems of machine learning is deciding how to act in an
uncertain world. For example, if I want my robot to bring me a cup of coffee, it
must be able to compute the correct sequence of electrical impulses to send to
its motors to navigate from the coffee pot to my office. In fact, since the results
of its actions are not completely predictable, it is not enough just to compute
the correct sequence; instead the robot must sense and correct for deviations
from its intended path.

In order for any machine learner to act reasonably in an uncertain environ-
ment, it must solve problems like the above one quickly and reliably. Unfortu-
nately, the world is often so complicated that it is difficult or impossible to find
the optimal sequence of actions to achieve a given goal. So, in order to scale
our learners up to real-world problems, we usually must settle for approximate
solutions.

One representation for a learner's environment and goals is a Markov decision
process or MDP. MDPs allow us to represent actions that have probabilistic
outcomes, and to plan for complicated, temporally-extended goals. An MDP
consists of a set of states that the environment can be in, together with rules
for how the environment can change state and for what the learner is supposed
to do.

Given an MDP, our learner can in principle search through all possible se-
quences of actions up to some maximum length to find the best one. In practice
the search will go faster if we know a good heuristic evaluation function, that is,
a function which tells us approximately how good or bad it is to be in a given
state. For small MDPs we can compute the best possible heuristic evaluation
function. With this optimal evaluation function, also called the value function,
a search to depth one is sufficient to compute the optimal action from any state.

One way to approach a large MDP is to try to compute an approximation
to its value function. If the approximation is good enough, a shallow search will
be able to find a good action from most states. Researchers have tried many
different ways to compute value functions, ranging from simple approaches based
on dividing the states into bins and assigning the same value to all states in
each bin, to complicated approaches involving neural networks and stochastic
approximation. Unfortunately, in general the simple approaches don't scale well,
while the complicated approaches are difficult to analyze and are not guaranteed
to reach a reasonable solution.

This thesis aims for a middle ground, between algorithms that don't scale
well because they use an impoverished representation for the value function and
algorithms that we can't analyze because they use too complicated a represen-
tation. All of the research in this thesis was motivated by the attempt to find
algorithms that can use a reasonably rich representation for value functions but
are still guaranteed to converge. In particular, we looked for algorithms that
can represent the value function as a linear combination of arbitrary but fixed
basis functions. While the algorithms we describe do not quite achieve this goal,
they do represent a significant advance over the previous state of the art.

There are three main parts to this thesis. In Chapter 2 we will describe
an approach that lets us approximate an MDP's value function using linear in-

terpolation, nearest-neighbor, or other similar methods. In Chapter 3 we will
step back and consider a more general problem, the problem of learning from a
sequence of training examples when we can't make distributional assumptions.
This chapter will also serve as an introduction to the theory of convex optimiza-
tion. Finally, in Chapter 4, we will apply the theory of linear programming and
convex optimization to the problem of approximating an MDP's value function.
Chapters 2 and 4 each contain experimental results from different algorithms
for approximating value functions. In addition to the three groups of results
listed above, this thesis also contains references to related work (in Chapter 5)
and a concluding summary (in Chapter 6).

These three threads of research work together towards the goal of finding
approximate value functions for Markov decision processes. The contribution of
Chapter 2 is the most direct: it enlarges the class of representations we can use
for approximate value functions to include methods such as ^-nearest-neighbor,
multilinear interpolation, and kernel regression, for which there were previously
no known convergent algorithms. While Chapter 3 does not mention MDPs
directly, it treats the problem of learning without a fixed sampling distribution
or independent samples, which is one of the underlying difficulties in learning
about MDPs. Finally, Chapter 4 presents a framework for designing value
function approximating algorithms that allow even more general representations
than those of Chapter 2.

In more detail, Chapter 2 describes a class of function approximation archi-
tectures (which contains, e.g., fc-nearest-neighbor and multilinear interpolation)
for which an algorithm called fitted value iteration is guaranteed to converge.
The contributions of Chapter 2 include discovering this class and deriving con-
vergence rates and error bounds for the resulting algorithms. The contributions
also include an improved theoretical understanding of fitted value iteration via a
reduction to exact value iteration, and experimental results showing that fitted
value iteration is capable of complex pattern recognition in the course of solving
an MDP.

Chapter 3 presents results about the data efficiency of a class of learning
algorithms (which contains, e.g., linear and logistic regression and the weighted
majority algorithm) when traditional statistical assumptions do not hold. The
type of performance result we prove in Chapter 3 is called a worst-case regret
bound, because it holds for all sequences of training examples and because it
bounds the regret of the algorithm or the difference between its performance
and a defined standard of comparison. Since one of the difficulties with learning
about Markov decision processes is that the training samples are often not
independent or identically distributed, better worst-case bounds on learning
algorithms are a first step towards using these algorithms to learn about MDPs.
The contributions of Chapter 3 are providing a unified framework for deriving
worst-case regret bounds and applying this framework to prove regret bounds
for several well-known algorithms. Some of these regret bounds were known
previously, while others are new.

Chapter 4 explores connections between the problem of solving an MDP
and the problems of convex optimization and statistical estimation. It then

proposes algorithms motivated by these connections, and describes experiments
with one of these algorithms. While this new algorithm does not improve on
the best existing algorithms, the motivation behind it may help with the design
of other algorithms. The contributions of this chapter include bringing together
results about MDPs, convex optimization, and statistical estimation; analyzing
the shortcomings of existing value-function approximation algorithms such as
fitted value iteration and linear programming; and designing and experimenting
with new algorithms for solving MDPs.

In the remainder of this introduction we will define Markov decision processes
and describe an algorithm for finding exact solutions to small MDPs. This
algorithm, called value iteration, will be our starting point for deriving the
results of Chapter 2; and the underlying motivation for value iteration, namely
representing the value function as the solution of a set of nonlinear equations
called the Bellman equations, will provide the starting point for the results of
Chapter 4.

1.1 Markov decision processes

A Markov decision process is a representation of a planning problem. Figure 1.1
shows a simple example of an MDP. This MDP has four states: the agent starts
at the leftmost state, then has the choice of proceeding to either of the two
middle states. If it chooses the upper state it is charged a cost of 1 unit; if it
chooses the lower, it is charged a cost of 2 units. In either case the agent must
then visit the final state at a cost of 1 unit, after which the problem ends.

The MDP of Figure 1.1 is small and deterministic. Other MDPs may be
much larger and may have actions with stochastic outcomes. For example,
later on we will consider an MDP which has more than 1050 states. We are also
interested in MDPs with infinitely many states, although we will usually replace
such an MDP by a finite approximation.

More formally, a Markov decision process is a tuple (S, A, 6, c, 7, So). The set
S is the state space; the set A is the action space. At any time t, the environment
is in some state xt G S. The agent perceives xt, and is allowed to choose an
action at £ A. (If \A\ = 1, so that the agent has only one choice on each step,
the model is called a Markov process instead of a Markov decision process.)
More generally, the available actions may depend on xt", if this is the case the
agent's choice is restricted to some set A(xt) C A. The transition function S
(which may be probabilistic) then acts on xt and at to produce a next state
xt+i, and the process repeats. The state xt+i may be either an element of S or
the symbol © which signifies that the problem is over; by definition £(©, a) = ©
for any a 6 -<4(©). A sequence of states and actions generated this way is called a
trajectory. So is a distribution on S which gives the probability of being in each
state at time 0. The cost function, c (which may be probabilistic, but must have
finite mean and variance), measures how well the agent is doing: at each time
step t, the agent incurs a cost c(xt, at). By definition c(©, a) = 0 for any a. The
agent must act to minimize the expected discounted cost E^^^^a^at));

Figure 1.1: A simple MDP.

7 € [0,1] is called the discount factor.
A function 7r which assigns an action to every state is called a policy. Fol-

lowing the policy -K means performing action -K{I) when in state i. If we write
Paij for the probability of reaching state j when performing action a from state
i, then we can define a matrix Pv whose i, jth element is p^^^j. P„ is called
the transition probability matrix for 7r.

A deterministic undiscounted MDP can be regarded as a weighted directed
graph, just like the example in Figure 1.1: each state of the MDP corresponds
to a node in the graph, while each state-action pair corresponds to a directed
edge. There is an edge from node x to node y iff there is some action a so that
S(x,a) = y; the weight of this edge is c(x,a). In Figure 1.1 we have adopted
the convention that an edge coming out of some node that points to nowhere
corresponds to a transition from that node to ©.

We can represent a graph like the one in Figure 1.1 with an adjacency matrix
and a cost vector. The adjacency matrix E has one row for each edge and one
column for each node. The row for an edge (i,j) has a -1 in column i and a
+1 in column j, and all other elements 0. The cost vector c has one element for
each edge; the element for an edge (i,6(i,a)) is equal to c(i,a).

The adjacency matrix E is related to the transition probability matrices Pn:
for any deterministic policy 7r, P„ - / is a submatrix of E. Similarly, cn (defined
to be the vector whose ith. element is c(i, ir{i))) is a subvector of c. In fact, if we
think of a policy as a subset of the edges containing exactly one edge leading
out of each state, then Pn - I is the submatrix of E that results from deleting
all rows that correspond to edges not in n.

We can generalize the idea of an adjacency matrix to stochastic or discounted
MDPs: the idea is that ^Pv - / should still always be a submatrix of E. So, we
define E to be a matrix with one row for every state-action pair in the MDP.
If action a executed in state i has probability pßij of moving the agent to state
j, then we define the jth entry in the row of E for state i and action a to be
either jpaij (if * ^ j) or fpaij -1 (if i = j). Similarly, we can generalize the cost
vector by setting c to be the vector whose element in the row corresponding to
state i and action a is E(c(«, a)).

Often we will write the adjacency matrix E without the column correspond-
ing to © and without the rows corresponding to transitions out of 0. This causes
no loss of information, since any missing probability mass in a transition may
be assumed to belong to 0, and since the transitions out of © are determined
by the definition of an MDP.

1.2 MDP examples

In addition to the simple example from Figure 1,1, Markov decision processes
can represent much larger, more complicated planning problems. Some of the
MDPs that researchers have tried to solve are:

• Factory production planning. In this problem different states correspond
to different inventory levels of various products or different arrangements
of the production lines, while actions correspond to possible rearrange-
ments of the production lines. The cost function includes money spent
on raw materials, rent paid for warehouse space, and profits earned from
selling products.

• Control of a robot arm. In this problem the state encodes the position,
joint angles, and joint velocities of the arm, as well as the locations of
obstacles in the workspace. Actions specify joint torques, and the cost
function includes bonuses for bringing the arm close to its target configu-
ration and penalties for collisions or jerky motion.

• Elevator scheduling. The state for this problem includes such information
as the locations of the elevators and whether each call button has been
pressed. The actions are to move the elevators from floor to floor and
open and close their doors, and the cost function penalizes the learner for
making people wait too long before being picked up or let off.

• The game of Tetris. We discuss this MDP in more detail in Chapter 4. Its
state includes the current configuration of empty and filled squares on the
board as well as the type of piece to be placed next. The actions specify
where to place the current piece, and the reward for each transition is
equal to the change in the player's score.

These MDPs are all too large to solve exactly; for example, the version of Tetris
we describe in Chapter 4 has more than 1050 states, while the robot arm control
problem has infinitely many states because it includes real-valued variables such
as joint angles.

1.3 Value iteration

If our MDP is sufficiently small, we can find the exact optimal controller by
any of several methods, for example value iteration, policy iteration, or linear

programming (see [Ber95]). These methods are based on computing the so-
called value, evaluation, or cost-to-go function, which is defined by the recursion

v(x) = minE(c(a:,a) +jv(6(x,a)))

(If 7 = 1 we will need to specify one or more base cases such as i>(©) = 0 to
define a unique value function.) This recursion is called the Bellman equation.
If we know the value function, it is easy to compute an optimal action from any
state: any a which achieves the minimum in the Bellman equation will do. For
example, the value function for the MDP of Figure 1.1 is (x, y, z, g) = (2,1,1,0).
The edge from x to y achieves the minimum in the Bellman equation, while the
edge from x to z does not; so, the optimal action from state x is to go to y.

Value iteration works by treating the Bellman equation as an assignment.
That is, it picks an arbitrary initial guess v^°\ and on the ith step it sets

v(i+V (ar) = min E(c(x, a) + v« (S(x, a))) (1.1)

for every x € X. For the special case of deterministic undiscounted MDPs, the
problem of finding an optimal controller is just the single-destination minimum-
cost paths problem, and value iteration is called the Bellman-Ford algorithm.

To save writing one copy of Equation 1.1 for each state, we define the vector
operator T so that

vd+i) _ T(v(0)

In other words, T performs one step of value iteration on its argument, updating
the value of every state in parallel according to the Bellman equation. A step
of value iteration is called a backup, and T is called the backup operator.

A greedy policy for a given value function is one in which, for all x, n(x)
achieves the minimum in the right-hand side of the Bellman equation. Given a
policy 7T, define T„ so that

[TAV)]X =nc(x,7T(x)) +[v]S{xMx)))

where the notation [v]x stands for component x of the vector v. Tx is called the
backup operator for IT. If n is greedy for v, then Tv = T>.

The operator Tn is affine, that is, there is a matrix ^P^ and a vector cn so
that TnV = 'yP7rv + Cir. In fact, P^ is the transition probability matrix for n, and
cv is the cost vector for n. That is, the elements of cn are the costs c(x, n(x))
for each state x, while the row of P„. which corresponds to state x contains the
probability distribution for the state xt+i given that xt = x and that we take
action ir(x).

If 7 < 1, the operator T is a contraction in max norm. That is, if u and v
are estimates of the value function, then ||Tu - Tv||oo < j\\u - vW^. If 7 = 1,
then under mild conditions T is a contraction in some weighted max norm. In
either case, by the contraction mapping theorem (see [BT89]), value iteration
converges to the unique solution of the Bellman equations.

Chapter 2

FITTED VALUE
ITERATION

10

Up to this point, we have described how to find the exact solution to a
Markov decision process. Unfortunately, we can only find exact solutions for
small MDPs. For larger MDPs, we must resort to approximate solutions.

Any approximate solution must take advantage of some prior knowledge
about the MDP: in the worst case, when we don't know anything about which
states are similar to which others, we have no hope of even being able to repre-
sent a good approximate solution. Luckily, if we have to solve a large MDP in
practice, we usually know something about where it came from. For example,
an MDP with 1010 +1 states is probably too large to solve exactly with current
computers; but if we know that these states are the dollar amounts in one-cent
increments between zero and a hundred million, we can take advantage of the
fact that a good action from the state $1053.76 is probably also a good action
from the state $1053.77. Similarly, we usually can't solve an MDP with in-
finitely many states exactly, but if we know the states are the positions between
0 and lm we can take advantage of the fact that a motion of lnm is unlikely to
matter very much.

The simplest and oldest method for finding approximate value functions is
to divide the states of the MDP into groups, pick a representative state from
each group, and pretend that the states in each group all have the same value
as their representative. For example, in the MDP with states between 0 and
lm, one group could be the states from 0 to 1cm with representative 0.5cm, the
next could be the states from 1cm to 2cm with representative 1.5cm, and so
forth, for a total of 100 groups. If a 1cm resolution turned out to be too coarse
in some interval, say between 33cm and 34cm, we could replace that group with
a larger number of finer divisions, say 330mm to 331mm, 331mm to 332mm,
and so forth, giving a total of 109 groups.

Once we have divided the states into groups we can run value iteration just
as before. If we see a transition that ends in a non-representative state, say
one that takes us to the state 1.6cm, we look up the value of the appropriate
representative, in this case 1.5cm. This way we only have to store and update
the values for the representative states, which means that we only have to pay
attention to transitions that start in the representative states. So, value iteration
will run much faster than if we had to examine all of the values and all of the
transitions.

This method for finding approximate value functions is called state aggrega-
tion. It can work well for moderate-sized MDPs, but it suffers from a problem:
if we choose to divide each axis of a rf-dimensional continuous state space into
k partitions, we will wind up with kd states in our discretization. Even if k and
d are both relatively small we can wind up with a huge number of states. For
example, if we divide each of six continuous variables into a hundred partitions
each, the result is 1012 distinct states. This problem is called the curse of di-
mensionality, since the number of states in the discretization is exponential in
d.

To avoid the curse of dimensionality, we would like to have an algorithm
that works with more flexible representations than just state aggregation. For
example, rather than setting a state's value to that of a single representative,

11

we might prefer to interpolate linearly between a pair of neighboring represen-
tatives; or, in higher dimensions, we might want to set a state's value to the
average of the k nearest representatives. This kind of flexibility can let us get
away with fewer representatives and so solve larger problems.

One algorithm that can take advantage of such representations is fitted value
iteration, which is the subject of this chapter. Fitted value iteration general-
izes state aggregation to handle representations like linear interpolation and
Ä-nearest-neighbor.

In fitted value iteration, we interleave steps of value iteration with steps of
function approximation. It will turn out that, if the function approximator sat-
isfies certain conditions, we will be able to prove convergence and error bounds
for fitted value iteration. If, in addition, the function approximator is linear in
its parameters, we will be able to show that fitted value iteration on the original
MDP is equivalent to exact value iteration on a smaller MDP embedded within
the original one.

The conditions on the function approximator allow such widely-used meth-
ods as fc-nearest-neighbor, local weighted averaging, and linear and multilinear
interpolation; however, they rule out all but special cases of linear regression,
local weighted regression, and neural net fitting. In later chapters we will talk
about ways to use more general function approximators.

Most of the material in this chapter is drawn from [Gor95a] and [Gor95b].
Some of this material was discovered simultaneously and independently in [TV94].
A related algorithm which learns online (that is, by following trajectories in the
MDP and updating states only as they are visited, in contrast to the way fitted
value iteration can update states in any order) is described in [SJJ95],

2.1 Discounted processes

In this section, we will consider only discounted Markov decision processes.
Section 2.2 generalizes the results to nondiscounted processes.

Suppose that TM is the parallel value backup operator for a Markov decision
process M, as defined in Chapter 1. In the basic value iteration algorithm, we
start off by setting v0 to some initial guess at M's value function. Then we
repeatedly set vi+1 to be TM(vi) until we either run out of time or decide that
some vn is a sufficiently accurate approximation to M's true value function v*.
Normally we would represent each Vi as an array of real numbers indexed by
the states of M; this data structure allows us to represent any possible value
function exactly.

Now suppose that we wish to represent vu not by a lookup table, but by
some other more compact data structure such as a piecewise linear function.
We immediately run into two difficulties. First, computing TM(vi) generally
requires that we examine v^x) for nearly every x in M's state space; and if
M has enough states that we can't afford a lookup table, we probably can't
afford to compute Vi that many times either. Second, even if we can represent
Vi exactly, there is no guarantee that we can also represent TM{vi),

12

To address these difficulties, we will assume that we have a sample Xo C 5 of
states from M's state space S. Xo should be small enough that we can examine
each element repeatedly; but it should be representative enough that we can
learn something about M by examining only states in Xo. Now we can define
the fitted value iteration algorithm. Rather than setting ui+1 to TM{VI), we will
first compute (TM(W;))(Z) only for x G X0; then we will fit our piecewise linear
function (or other approximator) to these training values and call the resulting
function Vi+i.

2.1.1 Approximators as mappings

In order to reason about fitted value iteration, we will consider function approx-
imators themselves as operators on the space of value functions. By a function
approximator we mean a deterministic algorithm A which takes as input the
target values for the states in XQ and produces as output an intermediate rep-
resentation which allows us to compute the fitted value at any state x G S. In
this definition the states in the sample Xo are fixed, so changing Xo results in
a different function approximator.

In order to think of the algorithm A as an operator on value functions, we
must reinterpret ^4's input and output as functions from S to R. By doing so,
we will define a mapping associated with A, MA : (S H> I) K (S 4 1); the
input to MA will be a function / that represents the training values for A, while
the output of MA will be another function / = MA(/) that represents the fitted
values produced by A.

If there are m states in the sample X0, then the input to A is a vector of m
real numbers. Equivalently, the input is a function / from Xo to M: the target
value for state x is f{x). Since the sample Xo is a subset of the state space S,
we can extend / to take arguments in all of S by defining f(y) arbitrarily for
y £ Xo- This extended / is what MA will take as input.

With this definition for /, it is easy to see how to define /: for any x G S,
f[x) is just the fitted value at state x given the training values encoded in /.
So, MA will take the training values at states x G X0 as input (encoded as a
function / : S —> E as described in the previous paragraph), and produce the
approximate value function / as output.

In the above definition, it is important to distinguish the target function /
and the learned function / from the mapping MA'- the former are real-valued
functions, while the latter is a function from functions to functions. It is also
important to remember that MA is a deterministic function: since Xo is fixed
and / is deterministic, there is no element of randomness in selecting yl's training
data. Finally, although MA appears to require a large amount of information as
input and produce a large amount of information as output, this appearance is
misleading: MA ignores most of the information in its input, since MAU) does
not depend on f(x) for x $■ Xo, and most of the information in / = M^(/)
is redundant, since by assumption f(x) can be computed for any x from the
output of algorithm A.

13

Figure 2.1: An example of the mapping for a function approximator.

Figure 2.1 shows the mapping associated with a simple function approxima-
tor. In this figure the MDP has only two states, x and y, both of which are
in the sample X0. The function approximator has a single adjustable param-
eter (call it a) and represents v[x) = v(y) = a. The algorithm for finding the
parameter a from the training data v{x) and v(y) is a <- (v(x) + v(y))/2.

The set of possible value functions for a two-state MDP is equivalent to R2,
so each point plotted in Figure 2.1 corresponds to a different possible value
function. For example, the point (1,5) corresponds to the value function that
has v{x) = 1 and v(y) = 5. The set of functions that the approximator can
represent is shown as a thick line; these are the functions with v(x) = v(y). The
operator MA maps an input (target) value function in M2 to an output (fitted)
value function on the line v{x) =v{y).

Figure 2.2 illustrates the mapping associated with a slightly more compli-
cated function approximator. In this figure the state space of the MDP is an
interval of the real line, and the sample is X0 = {1,2,3,4,5}. The function
approximator has two adjustable parameters (call them a and b) and represents
the value of a state with coordinate x as v(x) = ax + b. The algorithm for
finding a and b from the training data is linear regression.

The left column of Figure 2.2 shows two possible inputs to MA, while the
right column shows the corresponding outputs. Both the inputs and the outputs
are functions from the entire state space to R, but the input functions are plotted
only at the sample points to emphasize that MA does not depend on their value
at any states x g X0.

With our definition of MA, we can write the fitted value iteration algorithm

14

^MA

^MA

Figure 2.2: Another example of the mapping for a function approximator.

as follows. Given an initial estimate vo of the value function, we begin by
computing MA(VQ), an approximate representation of vo- Then we alternately
apply TM and MA to produce the series of functions

V0,MA(V0),TM(MA(V0)),MA(TM(MA(V0))),...

(In an actual implementation, only the functions MA(....) would be represented
explicitly; the functions TM(- ■ •) would just be sampled at the points Xo.) Fi-
nally, when we satisfy some termination condition, we return one of the functions
MA{...).

The characteristics of the mapping MA determine how it behaves when com-
bined with value iteration. Figure 2.3 illustrates one particularly important
property. As the figure shows, linear regression can exaggerate the difference
between two target functions: a small difference between the target functions
/ and g can lead to a larger difference between the fitted functions / and g.
For example, while the two input functions in the left column of the figure dif-
fer by at most 1 at any state, the corresponding output functions in the right
column differ by | at x = 3. Many function approximators, such as neural
nets and local weighted regression, can exaggerate this way; others, such as
^-nearest-neighbor, can not.

This sort of exaggeration can cause instability in a fitted value iteration
algorithm. By contrast, we will show below that approximators which never
exaggerate can always be combined safely with value iteration.

More precisely, we will say that an approximator exaggerates the difference
between two target functions / and g if the fitted functions / = MA(f) and
g = MA(g) are farther apart in max norm than / and g were. Then the
approximators which never exaggerate are exactly the ones whose mappings are
nonexpansions in max norm: by definition, if MA is a nonexpansion in max

15

2.5

2

1.5

1

0.5

^MA

2.5

2

1.5

2.5

2

1.5

1

0.5

>-*MA

Figure 2.3: Linear regression on the sample X0 = {1,2,3}.

norm, then for any target functions / and g and for any x we have

\f(x)-g(x)\<\f(x)-g(x)\

Note that we do^ not require that f(x) and f(x) be particularly close to each
other, nor that f(x) and f(y) be as close to each other as f(x) and f(y).

The above discussion is summarized in the following theorem:

Theorem 2.1 Let TM be the parallel value backup operator for some Markov
decision process M with discount 7 < 1. Let A be a function approximator with
mapping MA. Suppose MA is a nonexpansion in max norm. Then MAoTM has
contraction factor 7; so the fitted value iteration algorithm based on A converges
in max norm at the rate 7 when applied to M,

PROOF: We saw above that TM is a contraction in max norm with factor 7.
By assumption, MA is a nonexpansion in max norm. Therefore MA o TM is a
contraction in max norm by the factor 7. □

One might wonder whether the converse of Theorem 2.1 is true, that is,
whether the convergence of fitted value iteration with approximator A for all
MDPs implies that MA is a max-norm nonexpansion. We do not know the
answer to this question, but if we add weak additional conditions on A we can
prove a theorem. See Section 2.7.1.

2.1.2 Averagers

Theorem 2.1 raises the question of which function approximators can exaggerate
and which can not. Unfortunately, many common approximators can. For ex-
ample, as figure 2.3 demonstrates, linear regression can be an expansion in max

16

norm; and Boyan and Moore [BM95] show that fitted value iteration with lin-
ear regression can diverge. Other methods which may diverge include standard
feedforward neural nets and local weighted regression [BM95].

On the other hand, many approximation methods are nonexpansions, in-
cluding local weighted averaging, fc-nearest-neighbor, Bezier patches, linear in-
terpolation on a mesh of simplices, and multilinear interpolation on a mesh of
hypercubes, as well as simpler methods like grids and other state aggregation.
In fact, in addition to being nonexpansions in max norm, these methods all have
two other important properties. (Not all nonexpansive function approximators
have these additional properties, but many important ones do.)

First, all of the function approximation methods listed in the previous para-
graph are linear in the sense that their mappings are linear functions. Linearity
of the approximator in this sense does not mean that the fitted function / must
be linear; instead, it means that for each a;, f(x) must be a linear function of
f(xi),f(x2),... for some xi,x2,... G X0.

Second, all of these function approximation methods are monotone in the
sense that their mappings are monotone functions. Again, there is no need
for the fitted function / to be monotone; instead, this kind of monotonicity
means that increasing any of the training values cannot decrease any of the
fitted values.

We will call any function approximator that satisfies these three proper-
ties (linearity, monotonicity, and nonexpansivity) an averager. The reason for
this name is that averagers are exactly the function approximators in which
every fitted value f(x) is the weighted average of one or more target values
f(xi), f(x2), ■ • -, plus a constant offset. (The weights and offsets must be fixed,
that is, they cannot depend on the target values. They can, however, depend
on the choice of sample Xo, as they do in for example fc-nearest-neigbor.) Av-
eragers were first defined in [Gor95a]; the definition there is slightly less general
than the one given here, but the theorems given there still hold for the more gen-
eral definition. A similar class of function approximators (called interpolative
representations) was defined simultaneously and independently in [TV94].

More precisely, if M has n states, then specifying an averager is equivalent
to picking n real numbers fcj and n2 nonnegative real numbers ßij such that for
each i we have Yfj=i ßij ^ 1- With these numbers, the fitted value at the ith
state is defined to be

n

*i + / ,Pijfj
i=i

where fj is the target value at the j'th state. The correspondence between
averagers and the coefficients ßy and fcj is one-to-one because, first, any linear
operator MA is specified by a unique matrix (ßij) and vector (fej); second, if any
ßij is negative then MA is not monotone; and third, if J2l=i ßij > 1 f°r any *
then increasing the target value by 1 in every state will cause the fitted value
at state i to increase by more than 1.

Most of the ßijS will generally be zero. In particular, ßij will be zero if
j & XQ, In addition, ßij will often be zero or near zero if states i and j are far

17

(a) (b) (c)

Figure 2.4: A nondiscounted deterministic Markov process and an averager.
The process is shown in (a); the goal is state 1, and all arc costs are 1 except
at the goal. In (b) we see the averager, represented as a Markov process: states
1 and 3 are unchanged, while v(2) is replaced by «(3). The embedded Markov
process is shown in (c); state 3 has been disconnected, so its value estimate will
diverge.

apart.

To illustrate the relationship between an averager and its coefficients we
can look at a simple example. Consider a Markov decision process with five
states, labelled 1 through 5. Suppose that the sample X0 is {1,5}, and that our
averager approximates the values of states 2 through 4 by linear interpolation.
Then the coefficients of this averager are ki = 0 and

/ 1 0 0 0 0 \

f o 0 0 \
2 o o o I
\ 0 0 0 f

\ 0 0 0 0 1 y

(ßij) =

The second row of this array, for example, tells us that the fitted value for state
2 is equal to three-fourths of the target value for state 1, plus one-fourth of the
target value for state 5. The fact that the middle three columns of the ß matrix
are zero means that states two though four are not in the sample X0.

In this example the coefficients ßl>x and /?5i5 are both equal to 1, which
means that the fitted values at states 1 and 5 are equal to their target values.
This property is not true of all averagers; for example, in fc-nearest-neighbor
with k > 1, the fitted value at a state in the sample is not equal to its target
value but to the average of k different target values.

2.2 Nondiscounted processes

If 7 = 1 in our MDP M, Theorem 2.1 no longer applies: TM o MA is merely a
nonexpansion in max norm, and so is no longer guaranteed to converge. Fortu-
nately, there are averagers which we may use with nondiscounted MDPs. The
proof relies on an intriguing relationship between averagers and fitted value it-
eration: we can view any averager as a Markov process, and we can view fitted
value iteration as a way of combining two Markov decision processes.

18

(a) (b) '(c)

Figure 2.5: Constructing the embedded Markov process, (a) A deterministic
process: the state space is the unit triangle, and on every step the agent moves a
constant distance towards the origin. The value of each state is its distance from
the origin, so v* is nonlinear, (b) A representative transition from the embedded
process. For our averager, we used linear interpolation on the corners of the
triangle; as before, the agent moves towards the goal, but then the averager
moves it randomly to one of the corners. On average, this scattering moves the
agent back away from the goal, so steps in the embedded process don't get the
agent as far. The value function for the embedded process is x + y. (c) The
expected progress the agent makes on each step.

The Markov process associated with an averager has state space S, transition
matrix (ßij), and cost vector (&*). In other words, the state space is the same
as M's, the probability of transitioning to state j given that the current state is
i is ßij, and the cost of leaving state i is &,. (If S?=i ßij 1S ^ess tnan 1, we make
up the difference with a transition to the terminal state 0.) Since the transition
matrix is (ßij), there is a nonzero probability of going from i to j if and only if
the fitted value at state i depends on the target value at state j. (Presumably
this happens when the averager considers states i and j somehow similar.)

The reason this process is associated with the averager is that its backup
operator is MA- To see why, consider the backed up value at some state i
given the starting value function v. It is equal to the cost of leaving state i,
which is ki, plus the expected value of the next state, which is Y^=\ ßijvU)>
in other words, it is equal to the ith component of MAV. Figure 2.4(b) shows
one example of a simple averager viewed as a Markov process; this averager has
ß\\ = ß-iz = /?33 = 1 and all other coefficients zero.

The simplest way to combine M with the process for the averager is to
interleave their transitions, that is, to use the next-state function from M on
odd time steps and the next-state function from the averager on even time steps.
The result is an MDP whose next-state function depends on time. To avoid this
dependence we can combine adjacent pairs of time steps, leaving an MDP whose
next-state function is essentially the composition of the original two next-state
functions. (We need to be careful about defining the actions of the combined

19

MDP: in general a combined action needs to specify an action for the first step
and an entire policy for the second step. In our case, though, the second step
is the Markov process for the averager, which only has one possible action. So,
the actions for the combined MDP are the same as the actions for M.) It is not
too hard to see that the backup operator for this new MDP is TM ° MA, which
is the same as a single step of the fitted value iteration algorithm.

As mentioned above, the state space for the new MDP is the same as the
state space for M. However, since ßtj is zero if state j is not in the sample X0,
there will be zero probability of visiting any state outside the sample after the
first time step. So, we can ignore the states in S \ X0. In other words, the new
MDP is embedded inside the old.

The embedded MDP is the same as the original one except that after every
step the agent gets randomly scattered (with probabilities depending on the
averager) from its current state to some nearby state in X0. So, if a transition
leads from x to y in the original MDP, and if the averager considers state
z e X0 similar to y, then the same transition in the embedded MDP has a
chance of moving the agent from x to z. Figure 2.4 shows a simple example of
the embedded MDP; a slightly more complicated example is in Figure 2.5. As
the following theorem shows (see Section 2.7.2 for a proof), exact value iteration
on the embedded MDP is the same as fitted value iteration on the original MDP.
A similar theorem holds for the Q-learning algorithm; see Section 2.7.4.

Theorem 2.2 (Embedded MDP) For any averager A with mapping MA,
and for any MDP M (either discounted or nondiscounted) with parallel value
backup operator TM, the function TMoMA is the parallel value backup operator
for a new Markov decision process M'.

In general, the backup operator for the embedded MDP may not be a con-
traction in any norm. Figure 2.4 shows an example where this backup operator
diverges, since the embedded MDP has a state with infinite cost. However, we
can often guarantee that the embedded MDP is well-behaved. For example,
if M is discounted, or if A uses weight decay (i.e., if £"=1 ßtj < 1 for all «'),
then TM ° MA will be a max norm contraction. Other conditions for the good
behavior of the embedded MDP are discussed in [Gor95aj.

2.3 Converging to what?

Until now, we have only considered the convergence or divergence of fitted dy-
namic programming algorithms. Of course we would like not only convergence,
but convergence to a reasonable approximation of the value function.

Suppose that M is an MDP with value function v*, and let A be an averager.
What if v* is also a fixed point of M4? Then v* is a fixed point of TMoMA; so
if we can show that TM ° MA converges to a unique answer, we will know that
it converges to the right answer. For example, if M is discounted, or if it has
E(c(x, a)) > 0 for all x^Q, then TM ° MA will converge to v*,

20

If we are trying to solve a nondiscounted MDP and v* differs slightly from
the nearest fixed point of MA , arbitrarily large errors are possible. If we are
trying to solve a discounted MDP, on the other hand, we can prove a much
stronger result: if we only know that the optimal value function is near a fixed
point of our averager, we can guarantee an error bound for our learned value
function. (A bound immediately follows (see e.g. [SY94]) for the loss incurred by
following the corresponding greedy policy.) For a proof of the following theorem
see Section 2.7.3.

Theorem 2.3 Let v* be the optimal value function for a finite Markov decision
process M with discount factor 7. Let TM be the parallel value backup operator
for M. Let MA be a nonexpansion in max norm. Let vA be any fixed point of
MA- Suppose \\ vA — v* || = e, where \\ ■ \\ denotes max norm. Then iteration of
TM ° MA converges to a value function vo so that

II«*-«oil < 27C

MA(vo)\\ < 2e +

1-7
27c

1-7

Others have derived similar bounds for smaller classes of function approxi-
mators. For example, for a bound on the error introduced by approximating a
continuous MDP with a grid, see [CT89].

The sort of error bound which we have proved is particularly useful for ap-
proximators such as linear interpolation and grids which have many fixed points.
Because it depends on the maximum difference between v* and vA, the bound
is not very useful if v* may have large discontinuities at unknown locations: if
v* has a discontinuity of height d, then any averager which can't mimic the
location of this discontinuity exactly will have no representable functions (and
therefore no fixed points) within | of v*.

2,4 In practice

The most common problems with approximate value iteration are oversmooth-
ing and the introduction of barriers into the embedded MDP. By the introduc-
tion of barriers, we mean that sometimes the embedded MDP can be divided
into two pieces so that the first piece contains the goal and the second piece
has no transitions into the first. In this case, the estimated values of the states
in the second piece will be infinite. (A special case of this situation is that,
if the averager ignores the goal state, then the embedded MDP will have no
transitions into the goal.) A less drastic but similar problem occurs when the
second piece has only low-probability transitions to the first; in this case, the
costs for states in the second piece will not be infinite, but will still be artificially
inflated.

This sort of problem is likely to happen when the MDP has short transitions
and when there are large regions where a single state dominates the averager,

21

For a particularly bad example, suppose our function approximator is 1-nearest-
neighbor. If the transitions out of a sampled state x in the original MDP are
shorter than half the distance to the nearest adjacent sampled state, then the
only transitions out of x in the embedded MDP will lead straight back to x.
So, x will have infinite cost in the embedded MDP. Similarly, in local weighted
averaging with a narrow kernel, a short transition out of x in the original MDP
will translate to a high probability self loop in the embedded MDP, causing x
to have a finite but very large cost. In both of these examples, we can imagine
that the averager is producing a drag on transitions out of z, so that actions
in the embedded MDP don't get the agent as far on average as they did in the
original MDP.

One way to avoid creating barriers in the embedded MDP is to make sure
that no single state has the dominant weight over a large region. The best way to
do so is to sample the state space more densely; but if we could afford to do that,
we wouldn't need a function approximator in the first place. Another way is to
increase a smoothing parameter such as kernel width or number of neighbors,
and so reduce the weight of each sample point in its immediate neighborhood.
Unfortunately, increasing the amount of smoothing risks oversmoothing.

Oversmoothing happens when a function approximator interacts with value
iteration to wash out the features of the value function that we are interested in.
In oversmoothing, the function approximator could learn a good approximation
to the value function if it were trained by supervised learning, but fitted value
iteraction still converges to a bad approximation. For example, if the agent
must follow a long, narrow path to the goal, the scattering effect of a wide-
kernel averager is almost certain to push it off of the path before it reaches the
end.

Figure 2.6 demonstrates oversmoothing in a simple one-dimensional Markov
process. In this process, the state space is the interval [0,1]. The agent moves
left a distance of .1 every time step, except when its position is already left
of .1, in which case it just moves to the origin. The state x = 0 is terminal.
The cost at state x is .lcos(207rar), except that if x < .1 the cost is pro-rated
by the distance moved. Since the period of cos(20?rx) is equal to the distance
moved on each step, the agent's cost to move a given distance remains constant
throughout each trajectory and depends only on the trajectory's starting state.

The four graphs in Figure 2.6 show the performance of fitted value iteration
with fc-nearest-neighbor for k = 1,5,10,15. The solid line in each graph shows
the true value function v(x) = a;cos(207ra;). The dashed line shows the approxi-
mation to v(x) computed by fitted value iteration with fc-nearest-neighbor. For
k = 1 this approximation is good, while for larger values of k it cuts off the
peaks of v(x). To demonstrate that this problem is not just due to the inherent
smoothing in fc-nearest-neighbor, the dotted line in each graph shows the ap-
proximation to v(x) computed by supervised learning. For larger values of k it
is clear that, while some of the smoothing comes from fc-nearest-neighbor itself,
combining fc-nearest-neighbor with fitted value iteration amplifies the problem.

The reason for oversmoothing is that fitted value iteration applies the func-
tion approximator MA over and over again to the candidate value function.

22

Figure 2.6: Oversmoothing in fc-nearest-neighbor, for fc = 1,5,10,15 out of a
sample of 200 states. The solid line is the true value function, the dashed line
is its approximation with fitted value iteration and fc-nearest-neighbor, and the
dotted line is its approximation with supervised learning and fc-nearest-neigbor.

Since MA by definition loses some information, multiple applications of MA may-
lose so much information that the resulting approximation to the value function
is useless. This problem hits some function approximators harder than others:
while methods like state aggregation and linear interpolation don't usually suf-
fer too badly, methods like fc-nearest neighbor with large fc and local-weighted
averaging with a wide kernel can have problems.

To see why fitted value iteration behaves differently with fc-nearest-neighbor
than with linear interpolation, consider what happens if we are lucky enough
that the function approximator can represent the true value function exactly—
that is, suppose v* = MAV for some v. (The situation will be qualitatively
similar if we can just represent something close to the true value function.) If
we're using linear interpolation, the above assumption means that v* is a fixed
point of MA, since reapplying linear interpolation to a linearly-interpolated
function doesn't change anything. So, v* will be a fixed point of the fitted value
iteration update TM°MA, and we will end up with zero error. On the other hand,
reapplying fc-nearest-neighbor does change the result (that is, MAV ^ MAMAV

in general), so fitted value iteration with fc-nearest-neighbor can drift away from
v* and end up somewhere else.

Both of the above problems — too much smoothing and the introduction of
barriers — can be reduced if we can alter our MDP so that the actions move
the agent farther. For example, we might look ahead two or more time steps
at each value backup. (This strategy corresponds to the dynamic programming
operator Tjfo o MA for some n > 1. Since Tjfr is the backup operator for the
MDP derived by composing n copies of M, the previous sections' convergence

23

theorems also apply to Tfo o MA.) While in general the cost of looking ahead
n steps is exponential in n, there are many circumstances where we can reduce
this cost dramatically. For instance, in a physical simulation, we can choose
a longer time increment; in a grid world, we can consider only the compound
actions which don't contain two steps in opposite directions; and in the case of
a Markov process, where there is only 1 action, the cost of lookahead is linear
rather than exponential in n. (In the last case, TD(A) [Sut88] allows us to
combine lookaheads at several depths.) If actions are selected from an interval
of R, numerical minimum-finding algorithms such as Newton's method or golden
section search can find a local minimum quickly. In any case, if the depth and
branching factor are large enough, standard heuristic search techniques can at
least chip away at the base of the exponential.

2.5 Experiments

This section describes our experiments with several Markov decision problems:
two taken from [BM95], and one which shows that fitted value iteration can
learn value functions in extremely high-dimensional state spaces.

2.5.1 Puddle world

In this world, the state space is the unit square, and the goal is the upper right
corner. The agent has four actions, which move it up, left, right, or down by .1
unit per step. The cost of each action depends on the current state: for most
states, it is the distance moved, but for states within the two "puddles," the
cost is higher. See figure 2.7.

For a function approximator, we will use bilinear interpolation, defined as
follows: to find the predicted value at a point (a;, y), first find the corners (x0,y0),
(x0,yi), (xi,y0), and (#1,2/1) of the grid square containing (x,y). Interpolate
along the left edge of the square between (x0,y0) and (x0,yi) to find the pre-
dicted value at (x0,y). Similarly, interpolate along the right edge to find the
predicted value at (xi,y). Now interpolate across the square between (x0,y)
and (xi,y) to find the predicted value at (x,y).

Figure 2.7 shows the cost function for one of the actions, the optimal value
function computed on a 100 x 100 grid, an estimate of the optimal value function
computed with bilinear interpolation on the corners of a 7 x 7 grid (i.e., on 64
sample points), and the difference between the two estimates. Since the optimal
value function is nearly piecewise linear outside the puddles, but curved inside,
the interpolation performs much better outside the puddles: the root mean
squared difference between the two approximations is 2.27 within one step of
the puddles, and .057 elsewhere. (The lowest-resolution grid which beats bilinear
interpolation's performance away from the puddles is 20 x 20; but even a 5 x 5
grid can beat its performance near the puddles.)

24

Figure 2.7: The puddle world. From top left: the cost of moving up, the optimal
value function as seen by a 100 x 100 grid, the optimal value function as seen by
bilinear interpolation on the corners of a 7 X 7 grid, and the second value function
minus the first. Some plots are intentionally cut off at the top to preserve a
constant z scale and to show detail.

25

2.5.2 Hill-car

In this world, the agent must drive a car up to the top of a steep hill. Un-
fortunately, the car's motor is weak: it can't climb the hill from a standing
start. So, the agent must back the car up and get a running start. The state
space is [-1,1] x [-2,2], which represents the position and velocity of the car;
there are two actions, forward and reverse. (This formulation differs slightly
from [BM95]: they allowed a third action, coast. We expect that the difference
makes the problem no more or less difficult.) The cost function measures time
until goal.

There are several interesting features to this world. First, the value function
contains a discontinuity despite the continuous cost and transition functions:
there is a sharp transition between states where the agent has just enough
speed to get up the hill and those where it must back up and try again. Since
most function approximators have trouble representing discontinuities, it will be
instructive to examine the performance of approximate value iteration in this
situation. Second, there is a long, narrow region of state space near the goal
through which all optimal trajectories must pass (it is the region where the car
is partway up the hill and moving quickly forward). So, excessive smoothing
will cause errors over large regions of the state space. Finally, the physical
simulation uses a fairly small time step, .03 seconds, so we need fine resolution
in our function approximator just to make sure that we don't introduce a barrier.

The results of our experiments appear in figure 2.8. For a reference model,
we fit a 128 x 128 grid. While this model has 16384 parameters, it is still less than
perfect: the right end of the discontinuity is somewhat rough. (Boyan and Moore
used a 200 by 200 grid to compute their optimal value function, and it shows
no perceptible roughness at this boundary.) We also fit two smaller grids, one
64 x 64 and one 32 x 32. Finally, we fit a weighted 4-nearest neighbor model using
the 1024 centers of the cells of the 32 x 32 grid as sample points, and another
using a uniform random sample of 1000 points from the state space. Note
that the nearest-neighbor methods are roughly comparable in complexity to the
32 x 32 grid: each one requires us to evaluate about two thousand transitions
in the MDP for every value backup.

As the difference plots show, most of the error in the smaller models is
concentrated around the discontinuity in the value function. Near the disconti-
nuity, the grids perform better than the nearest-neighbor models (as we would
expect, since the nearest-neighbor models tend to smooth out discontinuities).
But away from the discontinuity, the nearest-neighbor models win. The 32 x 32
nearest-neighbor model also beats the 32 x 32 grid at the right end of the dis-
continuity: the car is moving slowly enough here that the grid thinks that one
of the actions keeps the car in exactly the same place. The nearest-neighbor
model, on the other hand, since it smooths more, doesn't introduce as much
drag as the grid does and so doesn't have this problem. The root mean square
error of the 64 x 64 grid (not shown) from the reference model is 0.190s, and of
the 32 x 32 grid is 0.336s. The RMS error of the 4-nearest-neighbor fitter with
samples at the grid points is 0.205s, The nearest-neighbor fitter with a random

26

Figure 2.8: Approximations to the value function for the hill-car problem. From
the top: the reference model, a 32 x 32 grid, a ^-nearest-neighbor model, the
error of the 32 x 32 grid, and the error of the fe-nearest-neighbor model. In
each plot, the x axis represents the agent's position, the y axis represents its
velocity, and the z axis represents the estimated time remaining until reaching
the summit at x = .6.

27

Figure 2.9: Two smaller models for the hill-car world: a divergent 12 x 12 grid,
and a convergent nearest-neighbor model on the same 144 sample points.

sample (not shown) performs slightly worse, but still significantly better than
the 32 x 32 grid (one-tailed «-test gives p = .971): its error, averaged over 5
runs, is 0.235s.

All of the above models are fairly large: the smallest one requires us to
evaluate 2000 transitions for every value backup. Figure 2.9 shows what happens
when we try to fit a smaller model. The 12 x 12 grid is shown after 60 iterations;
it is in the process of diverging, since the transitions are too short to reach the
goal from adjacent grid cells. The 4-nearest-neighbor fitter on the same 144 grid
points has converged; its RMS error from the reference model is 0.278s (better
than the 32 x 32 grid, despite needing to simulate fewer than one-seventh as
many transitions). A 4-nearest-neighbor fitter on a random sample of size 150
(not shown) also converged, with RMS error 0.423s.

2.5.3 Hill-car the hard way

In the previous section's formulation of this world the state space is [-1,1] x
[-2,2], representing the position and velocity of the car. As we saw, this state
space is small enough that value iteration on a reasonably-sized grid (1000 to
40000 cells, depending on the desired accuracy) can find the optimal value func-
tion. To test fitted value iteration, we expanded the state space's dimensionality
a thousandfold: instead of position and velocity, we represented each state with
two 32 x 32 grayscale pictures like the ones in figure 2.10(a), making the new
state space [0, l]2048. The top picture shows the car's current position; the bot-
tom one shows where it would be in .03s if it took no action. A simple grid on
this expanded state space is unthinkable: even if we discretized to just two gray
levels per pixel, the grid would have 22048 cells.

To approximate the value function, we took a random sample of 5000 legal
pictures and ran fitted value iteration with local weighted averaging. In local
weighted averaging, the fitted value at state x is an average of the target values
at nearby sampled states x', weighted by a Gaussian kernel centered at x. We
used a symmetric kernel with height 1 at the center and height \ when the
Euclidean distance from x' to x was about 22, (We arrived at this kernel width

28

(b)

(c)

Figure 2.10: The hill-car world.

29

by a coarse search: it is the narrowest kernel width we tested for which the
embedded MDP was usually connected.) We repeated the experiment three
times and selected the run with the median RMS error.

The resulting value function is shown in figure 2.10(b); its RMS error from
the exact value function (figure 2.10(c)) is 0.155s. By comparison, a 70 x 71
grid on the original, two-dimensional problem has RMSE 0.186s.

2.6 Summary

In this chapter we described an algorithm called fitted value iteration, which is
a generalization of state aggregation to handle any function approximator that
is a nonexpansion in max norm. Such approximators include fc-nearest-neighbor
and linear and multilinear interpolation. We proved convergence rate and error
bounds for fitted value iteration applied to a discounted Markov decision process.

To analyze fitted value iteration applied to a nondiscounted MDP, we added
the additional constraints that the function approximator be linear and mono-
tone. The resulting class of approximators, called averagers, still contains most
of the popular nonexpansive approximators. We showed that running fitted
value iteration with an averager on an MDP M is equivalent to running exact
value iteration on a new, smaller MDP embedded within M.

Finally, we ran experiments which demonstrate that the combination of fit-
ted value iteration with an averager can solve problems that require both pattern
recognition and planning. These experiments show that fitted value iteration
significantly extends the range of problems that we can solve with a provably-
convergent algorithm.

2.7 Proofs

This section contains proofs that were omitted from the main text, It can be
skipped without loss of continuity.

2.7.1 Can expansive approximators work?

The following theorem is almost a converse of Theorem 2.1. Instead of showing
that nonexpansion of MA is necessary to guarantee convergence for all MDPs
(which would be equivalent to showing that the existence of two points x and
y with \\MAx - MAy\\oo > \\x - y||oo is enough to find an MDP for which
fitted value iteration does not converge), it requires the additional condition
that x < y.

Theorem 2.4 Suppose that the approximator A has mapping MA, and suppose
that there are two value functions x < y such that

\\MAx - MAy\\oc > \\x-y\loo

30

Then there exists a Markov process M (with a finite value function) such that
fitted value iteration with approximator A does not converge to a unique answer
when applied to M.

PROOF: Write MAX = v and MAV = w. We will construct a Markov process
M such that the backup operator TM has either TMV = x and TMW = y or
TMW = x and TMV = y. In the former case the fitted value iteration operator
TM ° MA will have at least two fixed points, namely x and y, while in the latter
case TM ° MA will have a limit cycle that alternates between x and y. In either
case fitted value iteration will not converge to a unique answer.

Let s be any state where v and w differ by the maximum amount, that is,
with \v(s) — w(s)\ = ||« — w||oo- We will define the process M so that every
transition will end either in s or in the terminal state 0. First suppose that
v(s) < w(s). Let i be an arbitrary state. By assumption 0 < y(i) — x(i) <
w(s) — v(s). We define M's transition function so that, if i is the current state,
the next state is s with probability

() y{i)-x{i)
VK) w{s) - v(s)

and © with probability 1 — p(i). We define M's cost function so that the cost
of leaving state i is x(i) —p(i)v(s). With these definitions, we can compute

(TMv)(i) = p(i)v(s) + x(i) - p(i)v(s) = x(i)

(TMiv)(i) = p(i)(w(s) - v(s)) + x(i) = y(i)

So, we have TMV = x and TMW = y.
Now suppose that w(s) < v(s). In this case 0 < y(i) — x(i) < v(s) — w(s),

so we can define
(i) y(i)-x(i)

Py) v{s) - w{s)

and set the cost of leaving state i to y(i) — p(i)v(s). Then

(TMv)(i) = p(i)v(s) + y{i) - p(i)v(s) = y(i)

(TMw)(i) = p(i)(w(s) - v(s)) + y{i) = x(i)

So, TMV = y and TMW = x.
In either case, p(i) < 1 for all j, soM reaches the terminal state © with

probability 1 from any initial state. Therefore M's value function is finite as
required. □

2.7.2 Nondiscounted case

This proof uses the definition of an averager from [Gor95a], which is slightly
less general than the one given here. The proof works with only minor changes
for the more general definition,

31

PROOF OF THEOREM 2.2: Define the embedded MDP M' as follows. It will
have the same state and action spaces as M, and it will also have the same
discount factor and initial distribution. We can assume without loss of generality
that state 1 of M is cost-free and absorbing: if not, we can renumber the states
of M starting at 2, add a new state 1 which satisfies this property, and make all
of its incoming transition probabilities zero. We can also assume, again without
loss of generality, that ß1 = 1 and hi = 0 (that is, that A always sets v(l) = 0)
— again, if this property does not already hold for A, we can add a new state
1.

Suppose that, in M, action a in state x takes us to state y with probability
Paxy Suppose that A replaces v(y) by ßvky + £2 ßyzv{z). Then we will define
the transition probabilities in M' for state x and action a to be

Paxz = / .Paxyßyz \Z f1 lj

y

P'axl = ^Paxyißyl + ßy)
y

These transition probabilities make sense: since A is an averager, we know that
Ez ßyz + ßy is 1, so

^2 P'o-xz = mZ P^y ßyz +]T Paxyißyl + ßy)
* z^i y y

= ^2Pa*yy$2ßVz + ßvJ

= / jPaxy = 1
y

Now suppose that, in M, performing action a from state x yields expected
cost cxa. Then performing action a from state x in M' yields expected cost

^xa — Cxa > ~f / tPaxy'Py'ky'

V'

Now the parallel value backup operator TM' for M' is

v(x) <- min E(c'(x, a)+fv(6'(x, a)))

= mm 53i/0„(^0 + T«(Z))

= mm J2 ^Paxyßyz 1 (c'xa + -YV(Z))
<zjil

+ \J2Paxy(ßyl + ßy)) (4a + jv(l))

32

= mm^2paxy ^2ßyz(c'xa + -yv{z)) + (ßyl + ßy)c'xa

vz^l

= ma
in YJ

Paxy I 4a + 7 X! ßvMz)
v \ *¥=i

= min \c'xa + 7]T paxy]T ßyzv(z)
\ y z^i

= min J Cxa + J^2paxy'ßy'ky> + 1^2Paxy^2ßyzV(z)
\ y' v zjti

On the other hand, the parallel value backup operator for M is

v(x) <- mm E(c(x,a) + ^v(S(x, a)))
a

= mm'Y^paXy{cxa+^v(y))
y

If we replace v(y) by its approximation under A, the operator becomes TM°MA'

V(x) <- min ^Paxy f cxa + lißyky +]T ßyzV(z)) J

= min I Cxa + 7]T Paxyßyky + 7 ^ Paxy ^Z A/z'K*) I
\ y 3/ z#i /

which is exactly the same as TM
1
 above. □

2.7.3 Error bounds

PROOF OF THEOREM 2.3: By Theorem 2.1, TM ° MA is a contraction in max
norm with factor 7, and therefore converges to some VQ. Repeated application
of the triangle inequality and the definition of a contraction give

\\v0-TM(MA(v*))\\ = \\TM(MA(vo))-TM(MA(v*))\\

< 7||i>o-u*||
\\TM(MA(v*)) - v* \\ = \\TM{MA{V*))-TM{V*)\\

< 7||MA(t;*)-t;*||
< j\\MA(v*)-vA^ + ^\\vA-v*\\

= 7ll^(^)-M^(^)||+7||^-^|l
< 7||i;* -vA\\+j\\vA-v*\\

II Vö — v* II < \\VO-TM{MA(V,))\\ + \\TM{MA(V*))-V*\\

33

< 7ll wo - v* II + 27|| v* - vA

(1-7)11 wo-«'II < 21\\v*-vA\\
27e

I wo - V <
1-7

which is what was required. □
If we let 7 ->• 0, we can make the above error bound arbitrarily small. This

result is somewhat counterintuitive, since A may not even be able to represent
v* exactly. The reason for this behavior is that the final step in computing vo
is to apply TM; when 7 = 0, this step produces v* immediately.

Approximate value iteration returns MA(V0) rather than v0 itself. So, an
error bound for MA(v0) would be useful. The error bound on v0 leads directly
to a bound for MA(VQ):

\\v*-MA(v0)\\ < \\v*-vA\\ + \\vA-MA(v0)\\

= e+\\MA(vA)-MA(v0)\\

< c+H^-tibll
< e+||t^-,,* ||+ U«*-«on

27c
< 2e +

1-7

On the other hand, usually we use MA(v0) by doing a one-step lookahead to
find the greedy action; since this lookahead is equivalent to applying TM again,
the error bound on v0 may be a better indicator of performance.

2.7.4 The embedded process for Q-learning

Here is the analog for Q-learning of the embedded MDP theorem. (For a defini-
tion of the Q-learning algorithm, see [Wat89].) The chief difference is that, where
the theorem for value iteration considered the combined operator TM ° MA, this
version considers MA oT$ where T$ is the parallel Q-learning backup operator.
The difference is necessary to keep the min operation in the Q-learning backup
from getting in the way. Of course, if we show that either T$ o MA or MA o T%
converges from any initial guess, then the other must also converge.

This proof uses the definition of an averager from [Gor95a], which is slightly
less general than the one given here. The proof works with only minor changes
for the more general definition.

Theorem 2.5 (Embedded MDP for Q-learning) For any averager A with
mapping MA, and for any MDP M (either discounted or nondiscounted) with
Q-learning backup operator T%, the function MA o T$ is the Q-learning backup
operator for a new Markov decision process M',

PROOF: The domain of A will now be pairs of states and actions. Write ßxayb

for the coefficient of Q(y, b) in the approximation of Q(x, a); write kxa and ßxa

for the constant and its coefficient.

34

Take an initial guess Q(x, a). Write Q' for the result of applying T^ to Q;
write Q" for the result of applying MA to Q'. Then we have

Q'(x,a) = E(c(x,a)+^mmQ(S(x,a),b))
b

- cxa + 7 Y] Pxay min Q(y, b)
*—^ b

V

Q"(z,c) = ^2^2ßzcxaQ'(x,a)+ßzckzc

x a

= XX^c:ca I cKa+^i'Y^pXayTamQ{y,b) j +ßzckzc

x a \ y)

= XX ^cxaCxa + 7 X X|özca:a X -^ m6
in ^^' ^ + Pzckzc

X a x a y

= I / , / j PzcxaCxa "r" Pzc^zc 1 +
\ a; a /

7 X (X X ßzcxaPxay J >™ <3Ü/, &)
y \ x a /

We now interpret the first parenthesis above as the cost of taking action c
from state z in M'; the second parenthesis is the transition probability p'zcy for
M'. Note that the sum J2yPzcy wu^ generally be less than 1; so we will make
up the difference by adding a transition in M' from state z with action c to
state 1 (which is assumed as before to be cost-free and absorbing and to have
v(l) = 0). □

35

36

Chapter 3

CONVEX ANALYSIS
AND INFERENCE

37

38

This chapter presents a unified framework for reasoning about worst-case
regret bounds for learning algorithms. This framework is based on the theory
of duality of convex functions. It brings together results from computational
learning theory and Bayesian statistics, allowing us to derive new proofs of
known theorems, new theorems about known algorithms, and new algorithms.

This chapter does not mention Markov decision processes explicitly. Instead,
its results are at a more basic level: they treat the problem of learning without
independent, identically distributed data. This problem is one of the main
reasons that learning value functions for MDPs is difficult, but there are other
reasons as well, so in order to use this chapter's results in a value function
learning algorithm we would have to solve some additional problems.

Probably the most difficult of these problems is to decide how to score a
hypothesized value function. An ideal scoring method should take as input
some transitions and a value function, then decide how well the value function
explains the transitions. It should take into account how likely the transitions
are to have produced the observed Bellman residuals, and also how well the
value function predicts which transitions are optimal choices from their starting
states. Also, in order to take advantage of the results of this chapter, the score
should be convex in its value-function input. This last requirement rules out
such scoring methods as squared Bellman error. Chapter 4 discusses in more
detail the problem of scoring value functions.

Some of the material from this chapter will appear in [Gor99].

3.1 The inference problem

We are interested in the following problem: on each time step t = l...Twe must
choose a prediction vector wt from a set of allowable predictions W. Then the
loss function k(w) is revealed to us, and we are penalized lt{wt)- These penalties
are additive, so our overall goal is to minimize Ylt=\ h(wt)- Our choice of wt

may depend on l\ ...lt-i, and possibly on some additional prior information,
but it may not depend on It.. .IT-

Many well-known inference problems, such as linear regression and estima-
tion of mixture coefficients, are special cases of this one. To express one of these
specific problems as an instance of our general inference problem, we will usually
interpret the loss function k as encoding both a training example and a criterion
to be minimized: the location of the set of minima of It encodes the training
example, while the shape of lt encodes the cost of deviations in each direction.
This double role for lt means that the loss function will usually change from step
to step, even if we are always trying to minimize the same kind of errors. For
example, if we wanted to estimate the mean of a population of numbers from a
sample zi,Z2,. ■ ■, then lt(tv) might be (w — zt)2. This choice of It encodes both
the current training point zt and the fact that we are minimizing squared error.
(See Figure 3.1 for more detail.) Or, if we were interested in a linear regression
of yt on xt, hiw) might be (yt — w ■ Xt)2- This choice encodes both the current
example (xt,yt) and the fact that we want to minimize the squared prediction

39

Trial* 0 1 2 3 4
Prediction wt — 0 2 3 3

Training example zt — 4 5 3 8
Error type — Squared Squared Squared Squared

Loss function k(w) w2 (w - 4)'J {w - 5)2 (w - S)2 (w - 8)2

Loss of wt — ■ 16 9 0 25
Ttl loss oiWi ...wt 0 16 25 25 50

Best constant u 4
Loss of u 16 0 1 1 16

Ttl loss of u 16 16 17 18 34
Ttl regret -16 0 8 7 16

Figure 3.1: An example of the MAP algorithm in action, trying to minimize
sum of squared errors. The prediction at trial t is the mean of all examples up
to trial t -1, while the comparison vector is the mean of all examples up to trial
t.

error. Or, if we were trying to solve a mixture estimation problem, lt(w) might
be -ln(w ■ pt), where w is the vector of mixture proportions and pt%i is the
probability of the current training point under the ith model. (Here and below,
the notation pM stands for the j'th component of the vector pt.) This choice of
loss function encodes properties of the current example as well as the fact that
we want to maximize log-likelihood.

We want to develop an algorithm for choosing a sequence of wts so as to
minimize our total loss J2j=1k(wt), even if the sequence of loss functions lt
is chosen by an adversary. Unfortunately this problem is impossible without
further assumptions: for example, the adversary could choose loss functions
with corners or discontinuities and make the losses of two predictions vt and wt

arbitrarily different even if vt and wt were close together. So, we will make two
basic simplifications. The first is that we will place restrictions on the form of
the functions lt that the adversary may choose. The chief restrictions will be
that lt is convex and that a measure of the amount of information contained in
It does not increase too quickly from trial to trial.

The second simplification is that we will seek a relative loss bound rather
than an absolute one. That is, we will define a comparison class U of predictions,
and we will seek to minimize our regret T^=1{k{wt) - lt{u)) versus the best
predictor u € U. (Often we will take U = W, so that we are comparing our
predictions to the best constant prediction. Sometimes, though, we will need to
take WcWin order to prove a bound.) Since u can be chosen post hoc, with
knowledge of the loss functions lt, such a regret bound is a strong statement.

The focus on regret instead of just loss is the chief place where our results
differ from traditional statistical estimation theory. It is what allows us to
handle sequences of loss functions that are too difficult to predict: our theorems
will still hold, but since there will be no comparison u that has small loss, the

40

theorems will not tell us much about our total loss J2t-i k(wt).
Surprisingly, with only weak restrictions on k and u, we will be able to

prove bounds that are.similar to the best possible average-case bounds (that is,
bounds where lt is chosen by some fixed probability law). Our theorems will
unify results from classical statistics (inference in exponential families and gen-
eralized linear models) with those from computational learning theory (weighted
majority, aggregating algorithm, exponentiated gradient).

This regret bound framework has been studied before in [LW92, KW97,
KW96, Vov90, CBFH+95] among others. Also, some of our results are similar to
results from classical statistics such as the Cramer-Rao variance bound [S091].
Our theorems are more general than each of these previous results in at least one
of the following ways. First, they apply to more general classes of convex loss
functions, including non-differentiable ones. Second, they apply to both online
(i.e., bounded computation per example) and offline (unbounded computation)
algorithms. Third, they apply to all sequences of loss functions, not just on
average. Finally, they apply at all time steps, not just asymptotically. Our
theorems are also less general than traditional statistical results in some ways.
For example, while the Cramer-Rao bound requires twice-differentiability of the
loss functions, it does not require global convexity, just local convexity.

All of our theorems will concern variations on the following simple and in-
tuitively appealing algorithm, which takes as input the loss functions li...lt-i
observed on previous trials plus one additional loss function Zo which encodes
our prior knowledge before the first trial.

MAP ALGORITHM: Predict any wt e arg min«, J2lZo k(w).

The notation argminu, f(w) means the set of ws that minimize /. We assume
that the minimum is always achieved so that a legal prediction always exists.
Conditions which ensure the existence are described below, The algorithm is
called "MAP" or "maximum a posteriori" because of its Bayesian roots: if we
want to apply the MAP algorithm to the problem of estimating some population
parameters w from an independent identically distributed sample zi,z2,..., then
a good choice of loss function is the negative of the log likelihood k(w) =
— lnp(zt\w). With this setting for lt the MAP algorithm always chooses the
prediction with maximal posterior probability given the available information.
Of course, we can still use the MAP algorithm when we do not have i.i.d.
samples; in this case It will be unrelated to any likelihood, and so "maximum a
posteriori" may be a misnomer.

As the MAP algorithm is stated above it is not operational, since we may
not know how to perform the required minimization. A striking feature of the
MAP algorithm is that, despite the complicated machinery required to prove
its theoretical properties, it often has a simple and efficient implementation.
In fact, as we will see below, many well-known inference algorithms are MAP
algorithms.

One example of a specific implementation of the MAP algorithm is shown
in Figure 31. In this example, the learner is trying to minimize the sum of
squared distances between its predictions Wt and a sequence of training examples

41

Figure 3.2: Definitions for convex functions.

Z1...Z4. For this problem the MAP algorithm will always predict wt equal to
the mean of all examples from trials 0... t - 1. (By convention we set z0 = 0.)
As shown in the figure, the best possible constant prediction is u = 4, since that
is the mean of z0 ... z4. The total loss of u = 4 is 34, so the regret of the MAP
algorithm is the difference between the loss YH=I

lt{wt) and 34.
The rest of the paper is organized as follows. In Section 3.2 we will review

some basic facts about convex analysis that we will need later on. In Section 3.3
we will outline our main results and the strategy that we will use to prove
them. In Sections 3.4 and 3.5 we will prove loss bounds for the Weighted
Majority algorithm, as an example of how to apply the results from Section 3.3.
Section 3-6 introduces the generalized gradient descent algorithm, which is a
special case of the MAP algorithm. Section 3.7 proves regret bounds for a
general class of MAP algorithms that includes generalized gradient descent.
Section 3.8 gives some examples of generalized gradient descent, including one
which is a version of the Exponentiated Gradient algorithm. Section 3.9 treats
inference in exponential families. Section 3.10 introduces generalized linear
regression problems and proves regret bounds for them. Finally, Section 3.11
gives some examples of generalized linear regression algorithms, and Section 3.12
concludes.

3.2 Convex duality

For the proofs below we will need some definitions and basic results about
convex functions. A convex function is any function / from a vector space X to
K U {+00, -00} which satisfies

A/(aO + (1 - X)f(y) > f(\x + (j _ \)y)

for all x, y e X and A € [0,1]. A strictly convex function is one for which we
can replace > by > in the above inequality. A proper convex function is one
which is always greater than -00 and not uniformly +00. The domain of /,
dom/, is the set of points where / is finite. Convex functions are continuous on
jnt dom /, and differentiable on int dom / except for a set of measure zero. (The

42

notation int C refers to the interior of a set C, that is, the points of C which
can be surrounded by an open set contained within C.)

Some special cases of convex functions are the linear functions, f(x) — a-x+b
for a vector a and scalar b, and the indicator functions

S(x\C) = \ ° xlC
r v ' ' [oo x ¥ C

for a convex set C. (We will sometimes write a predicate instead of a set C, as
in 6(x\^2xi = 1). There should be no danger of confusion.)

A convex function / is closed if its epigraph {(x,y)\y > f(x)} is closed. The
closure of /, cl /, is the function whose epigraph is the closure of /'s epigraph.
For proper convex functions, closedness is the same as lower semicontinuity.

The convex hull of a function /, conv/, is the pointwise supremum of all of
the convex functions which are everywhere less than /. In other words, conv /
is the function whose epigraph is the convex hull of /'s epigraph. The convex
hull always exists and is convex, although it may be the constant function -co.

The subgradient of a convex function at some point, written df(x), is the
set of vectors a such that f(y) > f(x) + (y — x)-a for all y. In other words, the
subgradient of / at x is the set of slopes of all tangent planes to / at x. We will
write domdf for the set of x such that df(x) is nonempty. We have

int dorn / C dom df C dom /

The subgradient of a smooth convex function / is single-valued on int dom /,
and df(x) = {f'(x)} where f'(x) stands for the usual derivative |£. By a slight
abuse of notation we will write /' even when the subgradient is not single-
valued; in this case /' will mean any (fixed) function such that f'(x) € df(x).
The rules for working with subgradients are similar to the rules for working
with derivatives; in particular, d(Xf)(x) = \df(x) and d(f + g){x) D df(x) +
dg(x). We may replace containment by equality in the latter formula under mild
conditions, for example if relint dom / and relint dom g have a point in common.

For every function / we can define a new function /*, called the dual of /,
by the formula

f*(a) = $wpa-x- f(x)
X

The notation sup denotes the supremum or least upper bound of an expression.
The dual tells us how the optimal value of a maximization problem changes if
we add a linear function to the objective. The dual is always closed and convex,
and /** = clconv/. If / > g pointwise then f* < g*.

For example, the dual of exp(x) is a: lna:—x. The dual of — lnxis — 1—ln(—x).
The quadratic function x2/2 is self-dual. The dual of \x\ is <5(a;|[—1,1]).

The dual of kf(x) is fc/*(|). The dual of a linear function a • x + b is
<5(a:|{a}) — b. The dual of / + g is /* □ g*, where the infimal convolution u □ v
is defined as

(u □ v)(x) = inf {u(x - y) + v(y))
v

43

Divergences
Bizia)
Djzlb)

Figure 3.3: Generalized Bregman divergences.

A special case is that, if g = a • x + b, then (/ + g)*(x) = f*(x-a)- b. Another
special case happens when we can partition X into two subspaces Xf and Xg so
that f{x) depends only on the component of x in Xf and g(x) depends only on
the component of x in Xg. For example, if we write f(x, y) = g(x) + h(y), then
f*(x,y) = g*{x) + h*(y); so the dual of \x\ + \y\ is S(x\[-1, 1]) + %|[-1,1]).

The subgradients of / and /* are (almost) inverses of each other. If /
is strictly convex, then (f*)'(f'(x)) = x for all x where /' is defined. More
generally, for any closed convex function /, a G df(x) is equivalent to x €
df*(a).

Let / be closed and convex. From the subgradient inequality, we know that

Df(x\v) = fix) f(y) ~ (x - y) ■ f'(y) > 0

whenever f'(y) is defined. The function Df is called a Bregman divergence.
Some examples of Bregman divergences include squared Euclidean distance
(which is Dx.x) and information divergence (which is Dj2 Xi\nxi)-

Bregman divergences can be either symmetric (like squared Euclidean dis-
tance) or asymmetric (like information divergence). If / is strictly convex, then
Df(x\y) = 0 is equivalent to x = y. If g is linear, then Df+g = Df.

The Bregman distances given by / and /* are strongly related: if / is strictly
convex, then

Df(x\y)=Df.(f(y)\f(x))

If / is not strictly convex, this equality may not hold: if x is in the middle of a
flat spot of /, then f'(x) does not uniquely specify x.

This difficulty is a symptom of the more general problem which is illustrated
in Figure 3.3: if a point (y, f(y)) is at a corner of /, then there are infinitely
many possible tangent planes to / at y. So, there are infinitely many possible
Bregman divergences all represented by Df(z\y).

One solution is to pick a divergence arbitrarily and fix Df to mean just that
divergence. This solution is the one we have been using implicitly so far, since
we have defined f'(y) to be an arbitrary but fixed element of df(y). A better
solution is to generalize the definition of Bregman divergence.

44

We can motivate our generalization by noticing that, while a point y does
not define a unique tangent plane to /, a slope a does. There is always at most
one plane with slope a tangent to /, and if it exists it is given by the equation

/((/*)'(«)) + (*-(/•)'(«))<»
There is the same ambiguity in computing (/*)' that there was in computing /',
but it doesn't matter: if df* is multivalued, then each value refers to a different
point along a linear segment of /, and the tangent plane at any of these points
is the same.

So, we define the generalized Bregman divergence, which measures the dis-
similarity between a point x and a slope a, to be

Hf(x\a) = f(x) + f*(a)-x-a

This definition is a generalization of the original Bregman divergence since, if
a = f'(y), then Df(x\y) = H)f(x\a). All of the properties of Bregman diver-
gences given above carry over straightforwardly to D/.

Generalized Bregman divergences satisfy a simple symmetry property: our
assumption that / is closed implies that

Bf(x\a) = %. (a\x)

Another advantage of the new definition is that % (x\a) is defined for any x and
a (although it may be infinite) and convex separately in x and in a (although
it may not be convex jointly in a; and o). By contrast, Df(x\y) is undefined if
df(y) is empty, and it may not be convex in y.

A function is called positively homogeneous if f(Xx) = Xf(x) for all A > 0. A
nonnegative, positively homogeneous, closed, convex function is called a gauge.
Gauges are a generalization of norms: a norm is a gauge that is symmetric
(f(x) = f(—x)) and strictly positive except at the origin (/(#) = 0 •£> x = 0).
The dual of a gauge is an indicator function for a convex set containing the
origin, and vice versa.

Two gauges g and g° are called polar to each other if

g°(y) = inf{A > 0|(Vx) x ■ y < \g(x)}

For example, the Lp norm on K™ is defined to be

11*11, = £; def

and || • ||p and || • |j? are polar to each other when _- +1 — 1. Polar gauges satisfy
a generalization of Holder's inequality:

x-y<g{x)g°{y)

for all x,y, with equality iff Ay € dg(x) for some A > 0. Polarity between
gauges is related to duality between convex functions: if f{x) = ^g(x)2, then
f(x) = \g°{xf.

For more background on convex duality, see [Roc70] or [OR70].

45

3.3 Proof strategy

Our main result is a bound on the total regret of the MAP algorithm. It is stated
below as Theorem 3.1, and an important specialization is given as Theorem 3.2.
There are three basic steps in its proof and application.

Our proof is by an amortized analysis [CLR90]. So, the first step is to
define a potential function for the MAP algorithm. This potential function will
decrease on trials where the algorithm suffers a large regret, and increase on
trials where it suffers a small or negative regret. That way, our analysis will be
able to handle trials with large regret by averaging them out against other trials
with smaller regret. This kind of amortized analysis is a generalization of an
idea which was introduced in [LW92] and also used in many other regret-bound
proofs.

The second step is to sum the regret over all trials. In order to perform this
step, we will introduce some constants that, roughly speaking, summarize the
amount of information available to the algorithm at the beginning of each trial.
These constants depend on the type of loss function we are interested in, so we
will leave them unspecified.

The third and final step is to calculate the values of the constants for the
specific algorithms we wish to analyze. We will leave this step for subsequent
sections.

3.3.1 Existence

Before we prove any regret bounds, we will look at when the MAP algorithm
is well-defined, that is, when the minimum of Lt = Y%Zo h is guaranteed to be
attained. While it is difficult to derive necessary and sufficient conditions for
attainment of the minimum, there are some sufficient conditions which are easy
to check. Throughout this section (and the rest of the paper) we will assume
that each lt is closed and convex. Because it will avoid extra notation, we will
adopt the convention that any prediction is legal if Lt is the constant function
+co.

The simplest sufficient condition to check is whether domZJ is all of W,
since this condition does not depend on lt for t > 1. Often this condition is
the only one we can check. Examples of functions that satisfy this condition
are l0(w) = w2 and l0(w) = wlnw. An example of a function that does not
satisfy this condition is l0(w) — \w\. Loosely speaking, this condition captures
functions such that the norm of l'0(w) keeps increasing without bound as w
approaches the border of dom/o-

Another simple condition to check is whether lt attains its minimum for
each t. Examples of this kind of function include lt(w) = (w - z)2 and lt(p) =
Dx\nx(p\q)- Linear functions (such as the loss functions used in generalized
gradient descent, described below) do not usually satisfy this condition.

If lt is linear for t > 1, say k(w) = w ■ xt, then Lt will attain its minimum

46

exactly when
t-i

Xt = Y^xt £-dorn 8l*0

»=i

since this condition is true iff there is some w so that

0 G dLt(w)

-Xt € dl0(w)

w E dl*0(-Xt)

We can combine and generalize these conditions into the following lemma:

Lemma 3.1 Suppose that the functions lo,l\,... are convex and closed. Let
mi, m2, • • • be closed convex functions, each of which attains its minimum, such
that It — mt is convex. Suppose there is a point uit for each t so that

t-i

- y^ßi"~ m»)'(a'f) e dorn dip

Then the MAP algorithm applied to the loss functions lo,h, ■ ■ ■ produces a legal
prediction at each trial t.

PROOF: Fix a trial t and write x, = (k — mi)'(u)t) for 1 < i < t. The func-
tion M(w) = lo(w) + w ■ 5Z*=i xi achieves its minimum, since it is closed
and convex and since the condition 0 G dlo(w) + YliZi xi *s equivalent to

«>e^o(-££i«-
The functions U(w) — mi(w) — w ■ x» also achieve their minima, since 0 G

d(Ji — rrii)(oJt) — Xi. But Lt is the sum of M, li(w)—mi(w) — w-Xi, and rrii(w) for
i = 1.. .t — 1. So, since the sum of closed convex minimum-achieving functions
is also a closed convex minimum-achieving function, Lt achieves its minimum.
D

3.3.2 One-step regret
Our potential function will be a generalized Bregman divergence involving the
comparison vector u, the loss functions lt, and the MAP algorithm's current
prediction wt. The reason we use a divergence involving u and wt is that we
want to prove that, on trials where the MAP algorithm suffers a large regret
compared to u, it will move its next prediction closer to u. That way, we can
conclude that if it sees the same loss function again, it will incur a smaller regret.

Let Lt =]C*=o '»> so tnat tne wt cnosen by the MAP algorithm will be
argminw Lt(w). We define our potential function to be ©£((u|0). The potential
change on each time step is given by the following lemma.

Lemma 3.2 On trial t, the change in potential is

BLt+1 HO) - 3Ll («|0) = k{u) - IUQ) + L?+1(0)

47

PROOF: The potential on step t is

BLt(u\0) = Lt(u) + L*t(0)

So, the difference in potential from trial t to t + 1 is

(Lt+1 - Lt)(u) + L*t+1(0) - L*t(0)

But Lt+1 - Lt is just lt, so the result follows. D
The function L*t is important, since it encodes both the best possible loss so

far and the MAP algorithm's next prediction: Theorem 27.1 in [Roc70] states
that L;(0) = -Lt(wt) and wt e <9Lt*(0). Most of the work in applying The-
orem 3.1 to specific problems will come in analyzing L*t. For example, in the
Weighted Majority proof below, Lf*(0) will be the log of the sum of the unnor-
malized weights, and the main part of the proof will be to connect the change
in this quantity to the algorithm's loss.

3.3.3 Amortized analysis

In order to complete the proof of our bound, we need to relate the quantity
Lt (0)-it+i(0) to the loss of the MAP algorithm. Since the relationship depends
on the type of loss function we are using, for now we will just assume that there
are constants Ci > c2 > ,.. > 0 so that

Ct(L*t(0)-L*t+1(0))>lt(wt) (3.1)

Here lt is some function related to lt. Often we will just use lt = lt, but we
will sometimes need the extra generality. The smaller we take ct, the better our
bounds will be.

We can think of l/ct as a lower bound on how much information is available
to the algorithm at the beginning of trial t. The best allowable value of ct will
depend on how convex Lt is when compared to lt. For example, if every lt is
quadratic with the same second derivative, we will show below that we can take
l/ct proportional to the sample size t.

With the assumption (3.1), Lemma 3.2 becomes

BLt HO) - %t+1 («|0) > -k(wt) - lt(u)

or
h{wt) < ctlt(u) + ctBLt (u|0) - ct®Lt+1 (u\0) (3.2)

If we now apply lemma 3.2 to trial t+1, we get

lt+i(wt+1) < ct+1lt+i(u) + ct+1U>Lt+1 (u|0) - ct+1BLt+z (u|0) (3.3)

Notice that ©i4+1 (u|0) appears both in Equation 3.2 and in Equation 3.3, once
with coefficient -ct and once with coefficient c<+1. Since ct+1 < ct and since
Bregman divergences are nonnegative, the two terms together are less than or
equal to zero; so, we can drop them from our bound on total regret.

But now we have proven

48

Theorem 3-1 Let lo,h, ■ ■ ■ satisfy the assumptions of Lemma 3.1, so that the
MAP algorithm produces a prediction wt at trial t. Define Lt = Yli=i '*• Let
the constants ct and the functions lt be such that Ct{L\(0) - Lj+1(0)) > k(wt).
Then the for all u total regret of the MAP algorithm is bounded by

T T

Y^Mm) < Y,Ctlt^ + ClP<° H°)
t=i t=i

PROOF: Sum lemma 3.2 over all trials, then cancel terms as described above.
Finally, ignore the term containing the ending potential Dz,T+1 (w|0). □

3.3.4 Specific bounds

All that remains is to evaluate the constants ct for specific types of loss functions.
In the following sections we will do just that. The next two sections analyze the
Weighted Majority algorithm. Theorem 3.2, proved in Section 3.7, covers cases
in which the one-step losses can be represented as Bregman divergences. In
particular, Sections 3.6 and 3.8 cover generalized gradient descent algorithms,
Section 3.9 covers inference in exponential families, and Sections 3.10 and 3.11
cover generalized linear regression algorithms including linear regression and
exponentiated gradient.

3.4 Weighted Majority

One of the simplest MAP algorithms is Weighted Majority, described in [LW92].
Here we will analyze the versions which are called WMR (for randomized) and
WMC (for continuous) in that paper.

WM is designed for a problem called "learning from expert advice." In this
problem, the learner must choose one of N alternatives on each trial—say, which
of N football games to bet a predetermined amount on. We will represent this
decision with a vector u>t in the unit simplex P = {w € RN \w > 0 A J2i wi = !}•
Picking one of the corners of the simplex means betting on the corresponding
game. Picking a vector in the middle means either choosing a game to bet
on at random (with probabilities Wt) or splitting the bet among the games
(with proportions wt). These two interpretations yield the WMR and WMC
algorithms respectively. Since this is the only difference between WMR and
WMC, we will analyze both algorithms together and use WM to refer to either
one.

In either WMR or WMC, the learner then finds out which bets paid off and
receives a loss of wt • Xt, where Xfj is the loss for betting on the ith game. (In
WMC, the loss is deterministic, while in WMR, wt -xt is the expected loss. The
expectation is over the learner's randomization.) For notational convenience,
we will assume that 0 < xt,% < 1. We assume that the learner has no outside
information beyond the history of losses.

49

The above description of the expert advice problem is a little more general
than the version in [LW92]. That paper assumes that the learner is trying to
solve a classification problem. There are N experts who claim to know the
answer. The ith decision corresponds to agreeing with the ith expert, and xt,i
is the prediction error of the ith expert. This version of learning from expert
advice is a simple example of a regression problem (see below).

To solve the expert advice problem, WM follows a simple strategy. Whenever
an expert makes a mistake (i.e., has a loss of 1), WM reduces that expert's
weight by a constant factor ß € (0,1), then renormalizes to keep the sum of
the weights equal to 1. Experts with losses less than 1 have their weights
reduced less. More specifically, define Xt = E*=J**- Write vt,i = ßXt'■ Let
zt = 1/Ei«t,<- Then WM predicts wt = Ztvt. (Actually, [LW92] allows some
flexibility in choosing Xt, but this is one of the allowed choices.)

To design a MAP algorithm for learning from expert advice, we just need
to pick a prior loss function l0, since we already know lt(w) = w ■ xt for t > 1.
In order to make sure that our predictions are always in the unit simplex P,
we will set l0(w) = oo for w g P. A reasonable choice of l0 for w e P is some
multiple of the entropy function, making

IQ(W) OC H(W)

H{w) Hf 5{w\P) + J2mlnWi (3.4)
i

It is easy to verify that

H*(x) = In ^2 exp(xj)
i

d
dx. ■H*{x) = exp(xi)/J2exP(xj)

To duplicate WM, we will pick l0 = *r^H(w). (This choice of l0 means
that wi will be at the center of P; it is easy to accomodate other starting vectors
by adding a linear function to l0 to move its minimum to the desired wi.) Then

l*o(x) = Z^H*(-xlnß)

(l*0)'(x) = (H*n-xlnß)

Furthermore, since Lt(w) = l0(w) +Xt-w, we have L*t(x) =l%(x- Xt). That
means that our prediction on step t will be wt = (lo)'(-Xt) = (H*)'(Xtlnß),
or

wt,i ~ vUil ^2 vt,j
3

Vt,i = ßXt'<

which is identical to the prediction of WM,

50

Now that we have expressed WM as a MAP algorithm, we can analyze it
by applying Theorem 3.1. To do so, we must compute the constants ct. It is
easy to see that taking ct = — ln/3/(l - ß) for all t satisfies the assumptions of
Theorem 3.1, since we can write

-(L*t+1(0)-L*t(0))\nß = H*(Xt+1\nß)-H*(Xtlnß)
EaXt,i+xt,i

= m——

= lnY,ßXt^t,i
i

< hx^2(l - {1 - ß)Xt,i)wt,i
i

= ln(l - (1 - ß)xt ■ wt)

< -(l-ß)XfWt

The first inequality holds because ßx < 1 — (1 — ß)x for ß > 0 and x € [0,1],
while the second holds because ln(l — x) < —x. So now we have proven

Corollary 3.1 The loss of WM with parameter ß is bounded by

PROOF: Apply Theorem 3.1 with lt = k and ct = - ln/3/(l - ß). Then replace
h by ^H. D

If we now note that H)H(M|0) < lnA^ for all u £ P, the above result is
identical to Corollary 6.1 in [LW92].

3.5 Log loss

In step t of Weighted Majority the learner is charged the loss XfWt, where xt>% is
the loss of the ith expert. For some problems it may be more appropriate to use
the loss function lt (w) = — ln(yt • w) for some vector yt instead. Two examples
are the portfolio selection problem and the mixture estimation problem.

In the portfolio selection problem, the learner is presented with N invest-
ments on each time step. After the learner chooses what fraction of its fortune
to invest in each alternative, investment i grows by a factor of yt,i- So, if the
learner puts a fraction wt,i in each investment, its total wealth grows by a factor
of wt ■ yt- Since, in our framework, we combine losses from different trials by
adding them, we need to take the log of the wealth changes. That way the total
of the log wealth changes will be the log of the total wealth change. Since losses
are the negative of gains that leaves us with the penalty — ln(tyt • yt).

In the mixture estimation problem, the learner must discover the coefficients
in a mixture of N probability distributions. After choosing mixture coefficients

51

wt, the learner receives a new training example and computes the probability
yt,i assigned by the z'th probability distribution to the new example. Since we
want to maximize likelihood, or equivalently minimize negative log likelihood,
we charge the learner a loss of - ln(wt -yt)-

If we write xtyi = — lnyf)i we can run WM with the vectors xt. In other
words, we can compute wt according to the equations

3

vt,i = ßXt'{

t-i

*<=E xt

»=i

We will call the resulting algorithm WM-log, even though it has the exact same
series of computational steps as WM, to emphasize that we want to prove bounds
on its log loss £tln(w;t • yt). Just as before, we will assume that xtti £ [0,1]
for notational convenience. It turns out that WM-log is a special case of the
Aggregating Algorithm of [Vov90].

The WM-log update has a particularly simple interpretation in the portfolio
selection problem. If we let r\ = 1 (so that ß = 1/e), then the fraction of
money in the ith investment at step t is exp(-XM)/£\exp(-XM). The rate
of growth on step t is wt -yt = £4 exp(-Xt+M)/ £, exp(-XM), so we can prove
by induction that a fortune of $JV on step 1 grows to a fortune of £\ exp(-XM)
dollars on step t. So, the amount of money in the zth investment on step t is
just exp(-XM) = f]4 Vt,i dollars. But this is exactly the amount which would
be in the zth investment if we had just invested $1 in each investment on step 1
and let it sit. And, in fact, the bound which we will prove below is equivalent
to the obvious observation that investing $1 in each investment earns at least
1/iV times as much as investing $7V in the best investment.

To analyze the WM-log algorithm we will compare our performance, not
to the best vector uß P, but only to the best individual expert (i.e., the best
corner of P). Write P for the set of corners of P. Then if we write mt(w)=wxt,

k(w) - lt(u) < mt(w) - mt{u) Vu 6 P, Vw € P

since mt touches lt at each corner of P but lies above h elsewhere in P.
If we now run the MAP algorithm with loss functions H,m1,m2,..., then

the analysis of the Section 3.4 shows that our predictions will be identical to
WM-log with learning rate r\ = 1. Furthermore, with Lt = H + ^-"j1 mt, we
have

£*+i(0) - L*t(0) = ln]jPexp(-a;M)fuM = lnyt ■ wt = -lt{ Wt)

52

So, we can apply Theorem 3.1 to the loss functions H, mi, 7B2,... with ct = 1
and It = It- The result is that

T ' T

With the substitutions mt{wt) — h{wt) and ID#(u|0) = lniV, this becomes

T T

t=i t=i

This bound is equivalent to Equation (3.4) in [HKW98]. (That equation refers
to a constant CL, which plays the same role there that I/77 does here, and which
is set to 1 for the analysis of the WM-log algorithm.)

So, for the WM and WM-log algorithms, our regret bounds are the same
as the bounds previously obtained in the literature. As we would hope for a
general framework for regret bounds, once we set up WM and WM-log as MAP
algorithms, their proofs are similar: we evaluate the constant c = Ct and apply
Theorem 3.1. We can follow a similar strategy for the other MAP algorithms
described below. Since some of these proofs are more complicated, we will collect
some of the overlap into Theorems 3.2 and 3.3.

3.6 Generalized gradient descent

In the previous two sections we analyzed simple MAP algorithms in which all
of the loss functions except the prior were linear. In the first, the loss functions
started out linear, while in the second, we bounded the true loss functions by
a linear approximation. Because of the linearity of the loss functions, it was
easy to compute the prediction wt on each time step: the update rules for WM
and WM-log are both of the form wt = f(—r]Xt), where Xt is the sum of the
gradients of the previous loss functions and / is a function that we can compute
efficiently.

We would like to be able to play the same trick for an arbitrary convex loss
function lt. That is, we would like to bound It by a linear function nit, then
apply the MAP algorithm to the functions mt instead of k so that it will run
more efficiently. Of course, the predictions will be different if we use mt in place
of It, and so the regret may be larger. But, we may have to do significantly less
work per trial, and we will still be able to bound the regret.

The key inequalities which allowed us to replace It by mt in the previous
section were

lt(wt) < mt(wt)

h(u) > mt(u) VweW

If U = W then these inequalities force mt to be tangent to It at Wt; if U Q W then
mt may be a secant to k that passes above (wt,h(wt)). Subtracting the second

53

Name Link (/£)' Loss Z0

Identity a W
Logistic i w In u; + (1 - w) ln(l - w) l+exp(—a)

Inverse logistic I —a ln(l + exp(w))
Exponential expo to In w — w
Logarithmic lna expw
Normalized
exponential

expa;
J2i exp a; E, Wi In «jj - 1 + S(w\ Y,i m = 1)

Figure 3.4: Some examples of link functions.

inequality from the first gives lt(wt) - lt(u) < mt(wt) - mt(u) for all u e U, so
that when we apply Theorem 3.1 to bound the difference mt(wt) - mt(u) we
also get a bound on the regret lt(wt) - k(u).

In the previous section we achieved Equation 3.5 by restricting U to the
corners of the unit simplex, even though wt was allowed to range over the entire
simplex. In general we want to set U to the range of wt, and in this case the
only suitable linear functions mt are those which are tangent to lt at wt.

If we set mt to be a tangent to lt at wt, mt(w) = lt(wt) + (w-wt)-l't(wt), and
then feed the sequence of loss functions l0,m1,m,2,... to the MAP algorithm,
the result is an algorithm called generalized gradient descent or GGD. It is
"generalized" because, when l0 is quadratic, the update rule reduces to ordinary
gradient descent. We can write the GGD update rule as follows:

GGD ALGORITHM: Predict wt e argmin«, \l0(w) + w ■ J^Zl Kim

The GGD algorithm is often written in an additive form that looks different
from its statement above. If we write Xt = £-lJ V^Wi) then the additive form
of the GGD prediction rule is wt = f(-rjXt), Here r\ is a learning rate and
/ is a function from Rn to W1 satisfying appropriate conditions. For example,
choosing / to be the identity yields ordinary gradient descent. The advantage
of this form of the prediction rule comes from the fact it may be difficult to
compute l0 from /, while it is often easier to compute / from l0; so, if we are
given /, we can use the additive form of the GGD rule without needing to
compute l0.

We can prove that the two forms of the GGD algorithm are equivalent: if
T) = 1, then we can set / = (/£)'. For different learning rates we can just multiply
l0 by a constant, since (i/0)*(z) = ^(w) and so ((^o)*)'(x) = (Wfa*),

The function f{x) (or equivalent^ (§)'(*)) is called a link function. Fig^
ure 3.4 shows some useful link functions and their corresponding loss functions.
The one-dimensional link functions in Figure 3.4 can easily be generalized to
multiple dimensions by applying them separately to each coordinate.

Some examples of GGD algorithms are ordinary gradient descent, the per-
ceptron learning rule, and the Exponentiated Gradient algorithm of [KW97],

54

We will examine some of these algorithms in more detail below. But first, we
will prove regret bounds for a class of algorithms that includes GGD.

3.7 General regret bounds

3.7.1 Preliminaries

In many common MAP algorithms, each individual loss function can be written
as a Bregman divergence. For example, in linear regression, the loss functions
are of the form (yt — wt ■ xt)

2, which we may think of as a scaled Euclidean
distance between wt and any of the infinitely many perfect predictions w sat-
isfying yt = w ■ xt. (The scaling is such that all directions perpendicular to
xt have weight zero.) For a more general example, in GGD, if we adopt the
convention that miwlt(w) = 0, then the loss mt(wt) is k(u>t) = HJ/t (wt\0). Or,
for another example, in inference of the natural parameter in an exponential
family, we will see below that the appropriate loss function is E>i(wt\at) for a
fixed I. In this section we will derive regret bounds that hold when the loss
functions are divergences.

To that end, assume that we are running the MAP algorithm with loss
functions /0,mi,m2,..., and that mt{wt) = D/((wt\at). Also assume mt(w) <
3it (w\at) for all w. (These inequalities are a tangency condition similar to (3.5).)
Write Lt = lo +]Ci=i m*- This notation is similar to the notation from the
section on GGD, but in this section we are not assuming that the functions mt

are linear. In particular, we may take mt = It-
In order to bound the loss of the MAP algorithm, we have to make sure that

the prior loss Lt before each trial t is sufficiently convex. To see why, consider
what would happen if we took l0 = L\ to be i<S(w;|[0,1]). With this choice of
prior loss, our predicted w can change discontinuously from 0 to 1 even when
the one-step loss has only a small gradient. So, for example, if we see mi = w/2
and then 7712,m^,... = (1 - w),w,(l —w),w,..., our predictions will alternate
between 0 and 1 no matter how small 77 is. In fact, we will always choose the
worst possible w, and so our loss will be twice that of the comparison vector
u — .5.

We also have to make sure that the one-step divergence functions It for
t > 1 are not too convex. If they are, we can cause the MAP algorithm to
suffer an arbitrarily large regret per trial: the more convex /(is as compared to
Lt, the more of an advantage it is to pick the comparison vector after knowing
mt- For example, if IQ(W) = w2 (so that w\ =0), then the loss function
mi(w) = 106(w — l)2 will cause the MAP algorithm a loss of 106, while the
optimal comparison vector 1+1

1
Q_e will suffer a loss of approximately 10~6 even

though its /o-divergence from w\ is less than 1.
So, to ensure that Lt is sufficiently convex, we will pick a gauge g and

constants r)t G (0,1) and require that

55

for all v and w and a G dLt{w). And, to ensure that lt is not too convex, we
will require that

mt(at\W)>±(g°(at-a))2

for all w and a G dlt(w).
A consequence of the first assumption is that

Lt(w) - Lt(wt) > -(g(w - wt))
2

since the LHS is equal to 3Lt (w\0) and 0 € dLt(wt). A consequence of the
second assumption is that

mt(wt) > i(5°(-KK)))2

as long as dmt{wt) is nonempty, since

mt{wt) = k{wt)

> \{9°{at-a)f

for any a G dlt(wt), and since dlt(wt) - at 2 dmt(wt).
Scaling the gauge g will scale rjt inversely. So, in order to make the constant

T)t as small as possible in the first assumption, it is important to take g to be as
shallow as possible while still satisfying the second assumption.

3.7.2 Examples

To interpret our assumptions, it will help to compute the best gauge g and learn-
ing rate r\ for some examples. First suppose that Lt and lt are both quadratic,
say Lt(w) = fu/1'Mw and lt{w) = ^wTMw for some symmetric positive defi-
nite matrix M. (This choice of /(means that Tnt(wt) = \{wt - zt)

TM(wt - zt),

where zt = M-1at.) Then we can choose r\t = A and g(w) = VwTMw, since

-BL((?;|o) = -(v - w)TM(v -w) = -g(v - w)2

where w = (kM)~1a, and

% (at\w) = -ajM"1^ + -wTMw -at-w = \g°{at - af

where a = Mw.
Or suppose that lt is quadratic but Lt is proportional to the entropy function

H defined in Equation 3.4 In particular, let

h(w) = dMI*

56

Lt(w) = k®H(w\0)

It is well known that DH{V\W) > 2\\v — w\\\ for any v,w. So, j^Dit(v\w) >
|||u — w\\2- And just as in the previous example ED/« (at\w) > |||o(— w\\\. So,
we can choose g to be Euclidean distance and let r}t = ^.

These two examples show that g and ?y together provide a global analog to
the Fisher information matrix. When the Fisher information L"(w) is constant
over all possible parameter values w, as it is in the first example, the local and
global information measures are the same. On the other hand, when the Fisher
information varies, as it does in the second example, the global measure may
be much more conservative. This conservatism is necessary: in the average case
we can count on having our estimates stay near the optimal value, while in the
worst case our opponent can cause our estimates to wander into a region with
lower information.

Finally, suppose that lt(w) = ^(yt-w-xt)
2, and let at = 0 so that mt{wt) =

lt{wt). This choice of loss function is appropriate for linear regression problems.
It depends on w only through w • xt, so any change in w perpendicular to
Xt leaves It constant. That means that we can represent 1% as the sum of two
components, one of which depends only onio-ij and the other of which depends

only on w\xt = w - f^%t- A little algebra shows

W = *(*U, = o) + J^ + i(i^2

In other words, If is infinite everywhere except along the line through xt, and
along that line it is quadratic. The quadratic term (the last term in the expres-
sion above) is scaled so that it is equal to \ at xt and '-Xt- So, to bound l\, we
will need to make some assumption about xt.

If we suppose that the gauge g is symmetric and scaled so that g°(xt) < 1,
then it is not hard to see that Pi* (0\w) = h{w) > \{g°(x))2, since the latter
expression is also quadratic along the line through xt and scaled so that it is no
larger than | at ±xt- So, for example, if |ja;t||oo < X, we can take g(w) to be
xiMli.

Now, since ||u>||i < |M|2> we ^ave DH{V\W) > 2||u — w\\\. So, if Lt{w) =
M5H(W|0), we can take r]t ;= ^-.

3.7.3 The bound

We will now prove our regret bound.

Theorem 3.2 Suppose that the loss functions lo,Tni,m?,... satisfy the con-
ditions of Lemma 3.1, so that the MAP algorithm applied to these loss func-
tions always produces a prediction wt at each trial. Suppose that for all t,
dmt(wt) is nonempty, mt(wt) = B>it (wt\at), and mt(w) < D/t (w\at) for all w.
Write Lt — la + Sj=i mt ■ Suppose that there exists a gauge g and constants

57

1 > Vi > i}2 > • • ■ > 0 so that for all t we have

1
2

for all v and w and a £ dLt (w) and

rk®Lt(v\a)>Mv-w))2

%KH>i(p°(at-a))2

for all w andaE dlt(w). Then the loss of the MAP algorithm is bounded by

T T 1 1
Y,mt(wt)<Y/T-—mt(u) + - BM«|0)
i=i t=i l ~ W 1 ~ Vi

PROOF; We have

Lt(w) > ^-{g{w - wt)f + Lt{wt)

mt(w) > mt(wt) + (w - wt) ■ m't{wt)

Lt+i(w) > ^-(g(w - wt))
2 + (w - wt) ■ m't(wt) + Lt(wt) + mt(wt)

L*t+i{x) < ■^{g0(m{x-rn't{wt))))
2+x-wt-Lt{wt)-mt{wt)

L*t+i(0)-L*t(0) < ±(g°(-ntm>t(Wt)))2 -mt(wt)

< (r)t - l)mt(wt)

The fourth line above is true because the dual of af(w - c) + b • (w - c) is
af*((x - b)/a) +X-C. The fifth is true because L4*(0) = -Lt(wt). The last line
is true because g°(-r)tm't(wt))

2 = n2g0(-m't{wt))
2.

The desired result now follows by applying Theorem 3.1 to the loss functions
lo,mi,m2,..., taking lt = mt and ct = jz~. D

The way it is stated, this theorem bounds the loss in terms of the functions
mt; it is just as easy to give a bound in terms of lt by substituting mt(wt) =
Bj, (wt\at) and mt{u) < H>h (u\at).

3.8 GGD examples

Perhaps the simplest use of GGD is to approximate the mean of a population of
vectors by looking at a sample zu z2,.... This application of GGD corresponds
to the prior loss l0(w) == k\\w\\2 and the one-step losses lt(w) = ||w-z(||

2. With
these loss functions, GGD will predict wt+1 = wt + \{zt - wt). We saw above
that we can take g to be Euclidean distance and rj = £; so Theorem 3.2 tells us
that our loss is bounded by

EIK-^II
2
<T4TI:^--II

2
 + r

Arlk1l2
*=1 * k t=l L~ k

58

where z = ^r-^ X^=i zt ^s the optimal constant prediction.
The first term on the right-hand side of the above inequality depends on the

training examples zt only through their variance; the second depends on the
examples only through their mean. So, the inequality tells us that even if the
training examples are chosen by an adversary, as long as they have bounded
mean and variance, we can still achieve bounded average regret per trial. More
specifically, suppose that as T —> oo the mean of z\... ZT approaches ß and the
covariance approaches a21. Then for large enough T the second term becomes
negligible, and our average loss per trial will approach ^—. So, our average

2

regret per trial will approach f^-.
By way of comparison, we can compute the asymptotic average case regret

per trial for this variant of GGD: suppose that the training examples zt are
independent indentically distributed random variables that follow a normal dis-
tribution with mean ß and covariance a21. Then the optimal prediction will ap-
proach ß for sufficiently large T, and its expected loss on each trial will approach
a2. On the other hand, by solving the recurrences Ewt+i = (1 — rj)Ewt + T]Ezt

and Vartt;t+i = (1 — r])2~Vaxwt + rpNarzt, we can see that Ewt -»• ß and
V&TWt -> 2^-CT

2
/. So, the expected loss per trial of the GGD algorithm ap-

proaches

£11* - A*Hi + E\\ß - wt\\
2 -+ a2(l + -±-) = -^

2

and the average regret per trial approaches i^-. That means that as r\ -» 0
there is a difference of approximately a factor of two between the worst-case
and average-case regret for this algorithm. This gap appears to be necessary:
at least for small learning rates, the sequence z±, z2, ■.. = 1, —1,1, —1,... forces
nearly as much regret as our bound.

For another example, take IQ to be a multiple of the entropy function on
the unit simplex. That is, suppose IQ(W) = kDu(w\0), with H denned in
Equation 3.4. The resulting update is

wt,i exp(-xt,i/k)
Wt+hi = ^Jv : ^T z2i=iWt,iexp{-xt,i/k)

where xt = l[{wt). This is the Exponentiated Gradient algorithm of [KW97].
(If the loss functions lt for t > 1 are linear, it is also the same as the WMC
algorithm.)

If now k(w) = \(w — zt)
2 for t > 1, we saw above that we can take i\ = j^.

So Theorem 3,2 tells us that our loss is bounded by

ElK-^ii2<T^xSllu-J8*ll2 + rrx]D,ff(u^
t=l 4fc t=l L 4fc

for any u. This bound is not the same as any bound in [KW97] or [KW96],
since those papers consider only regression problems; so, we defer a comparison
until Section 3,11 below,

59

3.9 Inference in exponential families

The MAP algorithm requires solving a minimization problem to find each pre-
diction wt. If the loss functions are arbitrary, the minimization problem may be
difficult. Suppose, though, that lt has the same functional form for each t—say,
lt(w) =Bi(w\at) for some fixed strictly convex function I. (By convention we
take I so that a0 = 0.) Then, as we will show shortly, we will always be able to
put the optimization problem into a simple form.

One situation where this kind of prediction problem might arise is when
the vectors at are samples from some target distribution. Our goal in this
case is to predict wt so that l'(wt) is as close as possible to the center of the
distribution, where centrality is defined by the divergence Bj. As we will see
in Section 3.9.2, this definition of centrality is a good one if we are trying to
infer the natural parameter in an exponential family of distributions (hence the
title of this section). Unlike the standard statistical approach, though, we are
making no distributional assumptions about the vectors at: they need not be
identically distributed, independent, or even random.

In more detail, our optimization problem at step t is to find

t-i

arg mm £*<(«>)
i=0

Define Lt =]£i=o '«J
SO

tnat our problem is to minimize Lt. Then the prediction

of the MAP algorithm will be

t-i

argminZ,t(u;) = argmin£[Z(u;) +l*(ai) - w ■ Oj]
i=0

t-1

tl(w) - w ■ y^qj argmin

arg min
w

i=0
t-1

ZM-W —£di
i=0

w e dl*(at)

where we have defined ät to be the mean of a0 ... at-i. In other words, the MAP
algorithm has a simple implementation: to make our prediction, we compute
the average of all the samples at seen so far, then apply (I*)' to this average.

The implementation is almost the same if we take l0 = n0P; (W\OQ) for some
multiplier n0. In that case, the prediction is a weighted average of a0 .,. at-i in
which a0 gets n0 times as much weight as any of the other ats.

3.9.1 Regret bounds

In our current inference problem, Lt and lt each differ from a multiple of I by
a linear function. So, in order to apply Theorem 3,2, we must show that / is

60

neither too convex nor too shallow. In other words, we must find a gauge g and
constant k so that

Wi(v\a)>-(g(v-w))2

for all v and w and a € kdl(w) and

®i*(at\w)>^(g°(at-a))2

for all w and a € dl(w).
Under these assumptions, we can apply Theorem 3.2 with IQ = noH>i(w\0),

lt(w) = mt(w) = H>i(w\at) for t > 1, and r\t = n +t_i- (To make sure that
% < 1 we must take no > k.) The result is that

T r 1

t=\ t=i

If Z((u) is bounded for t larger than some to, then the first term on the right
hand side is 0(t + lni) as t -» 00. This is the same asymptotic behavior as the
average-case regret, although the constant in front of lni will usually be smaller
for average- than for worst-case bounds.

The constant k will be equal to 1 only if / is quadratic. However, if the
predictions wt remain in some region W for sufficiently large t, for those t
we can take g and k as bounds on the convexity of / just within W instead
of globally. This trick may result in better asymptotic bounds in some cases.
Even with this trick the bounds may not be very tight: for example, it does not
appear to be possible to prove bounds of the form obtained in [Pre96] using this
strategy.

3.9.2 A Bayesian interpretation

We have just proved worst-case regret bounds for a special case of the MAP
algorithm. Interestingly, we can also justify the same algorithm with an average-
case argument. (For background see [BN78].) Suppose, just as before, that our
loss on step t is k(w) = ®i(w\at). Suppose now, though, that each at is an
independent sample from some known distribution. To ensure that the loss is
finite, we will require at to be in domZ* w.p.l.

In particular, suppose that the distribution of at has the form

H(a\9) = exp(0 ■ a - K(6) - <f>{a))

for some parameter vector 6 and fixed functions K and <j>. (Such a set of distri-
butions is called an exponential family, and 0 is called its natural parameter.)
Suppose also that our prior distribution for 9 has the form

p>(9\\o,n0) = exp(Ao ■ 9 - UOK{9) - x(Ao,fto))

61

for parameters A0 and n0, where the function \ is determined by the requirement
that the density must integrate to 1. (This distribution is called the conjugate
prior for ß, and it is also an exponential family.) We will see below that choos-
ing K — I has an intuitive interpretation, but other choices of K may also be
reasonable.

Then the log posterior likelihood after seeing t samples will be

6 ■ A - TIK(6)

where A = A0 + J2i=i ai and n = n0 + t. We can find the posterior distribution
for 9 by normalizing the posterior likelihood so it integrates to 1. In fact, by
the definition of x, the normalization factor is exp(-x(A,n)). So, the posterior
for0isi/(0|A,n).

Notice that the posterior distribution of 9 depends on the observed samples
zt only through £\ at. This sum is called a sufficient statistic for inference
about 9, since once we know it we need no other information about the zts to
compute the posterior distribution for 9.

Now that we have the posterior distribution for 6, we can compute the best
prediction w. First suppose that we knew 9 exactly. Then the expected loss on
each step would be

Ee(l(w) + l*(a)-wa)

where we have written Ee as shorthand for E(-\a ~ ß{a\6)). Since we don't
know 9 exactly, we must take the expectation of the above expression under our
posterior distribution for 0. That yields an expected loss of

l(w) + Ex,n(Ee(l
m(a))) - w ■ Ex,n(Ee(a))

Since I is convex, we can find the w which minimizes expected loss by differen-
tiating and setting to zero:

0 e 8l(w) - Ex,n(Ee(a))

So, we can pick any w in dl*(Ex,n(Ee(a))).
Technically, we need to worry that there might be no w that achieves the

minimum. In that case the above equation would have no solution. But our
reasoning below will provide conditions which guarantee that the expected value
is always in intdom/*. So, under those conditions a solution must exist.

Under some regularity conditions on /*, we can compute the expected value
of a. First, we can prove by differentiating the identity / p(a\0)da = 1 that

Ee{a) = K'{e)

(see for example equation 2.2 (i) of [DY79]). For this reason, K'(0) is called
the expectation parameter of the distribution /x. Next, by applying Theorem 2
of [DY79], we find that

n

62

Link name Distribution Conjugate prior

Identity Normal Normal
Logistic Beta Binomial

Inverse logistic Binomial Beta
Exponential Poisson Gamma
Logarithmic Gamma Poisson

Normalized exponential Dirichlet Multinomial

Figure 3.5: Links and their associated distributions.

So, as long as \/n is in intdom/*, there will be a legal prediction w. But X/n
will be in intdom/* as long as Ao/no is, since it's the average of a bunch of
quantities in domZ* at least one of which is in intdom Z*.

But now we have arrived back at our original algorithm: to find the pre-
diction wt, just average together ao...at and then apply (I*)'. Interestingly,
this conclusion doesn't depend on which exponential family we choose as the
distribution for at. Instead, any exponential family which is contained in dom I*
results in the same optimal prediction. However, if we choose the exponential
family so that K = Z, then we can interpret w as the inferred value of the natural
parameter.

The mapping (/*)' which takes us from the observed average to the natural
parameter is called a link function, just as it was for generalized gradient descent.
Figure 3.4 above shows some useful link functions. Figure 3.5 shows which link
functions correspond to which exponential families if we choose K = I.

3.10 Regression problems

A common type of prediction problem is generalized linear regression [MN83,
LW92, KW97], which includes linear regression, logistic regression, other gener-
alized linear models, perceptron learning, and many other problems. In general-
ized linear regression, on each time step t we must predict a vector of regression
coefficients wt- We are then given an input vector xt, from which we form a
prediction yt = f(xfWt). The monotone function / is called the prediction link
function, since it provides a link between the coefficients wt and the prediction
yt. Finally, we find out the desired output yt and receive a loss k(w) = l(yt,yt)-
Regression problems are a special case of our general prediction problem, since
they differ only in that we have specified a particular form for the loss function k:
for example, the loss functions for linear regression are of the form (yt — w-xt)2.

We should not confuse the prediction link function, which is a mapping from
E to K that connects w-xt with the prediction y, with the link function described
earlier, which is a function from W to W that connects the natural parameters
with the expectation parameters. In designing an algorithm, we can choose the
two kinds of link functions separately. When there is a danger of confusion,

63

Name Link Function / Corresponding F

Step f -1 p<0
I 1 P>0 \P\

e-insensitive
(-1 p<-e

< 0 -e<p<e
1 1 p> e

max(|p| - e,0)

Huber
1 -1 p< -e

< p/e -e <p < e
[1 p>e

f -p-e/2 p<-e
< p2/2e -e<p<e
{ p-e/2 p>e

Figure 3.6: Some examples of prediction link functions.

we will call the latter the parameter link function. All of the one-dimensional
parameter link functions in Figure 3.4 are also possible choices for the prediction
link function; Figure 3.6 shows some additional possible choices.

3.10.1 Matching loss functions

In order to apply our theory, we need the one-step losses lt(w) to be convex.
This is a condition on the relationship between the prediction link function /
and the loss function l(y,y). It turns out that, given a monotone link function,
we can always define a matching loss function so that lt{w) is convex. If / is
invertible, we follow [AHW96] and define its matching loss function to be

l(y,y)=DF.(y\y)

where F is any convex function with / = F'.
If / is not invertible (that is, if F has a linear segment, so that F* has

a corner) then the above definition no longer works. Intuitively, the problem
is that our predictions get "stuck" as they cross the corner in F*: there is a
whole range of p with the same f(p) and therefore the same loss, producing an
extraneous flat spot in lt.

We can fix the problem by allowing lt(w) to depend on pt = xt ■ w di-
rectly, rather than just on f(pt). More specifically, we generalize the definition
of [AHW96] and set

m(p, y) = HF, (y\p) = Bp (p\y) = F(p) + F*(y)^y,p

With this definition, it is easy to see that m(p,y) is convex as a function of p,
so lt(w) = m(xt ■ w,yt) is convex in w. Intuitively, what we have done is allow
ourselves to specify not just which y will give us zero loss, but also what the
derivative of F* is at that point. When F* is smooth, there is only one possible
choice of derivative for each prediction, so we have not changed anything; but
when our prediction is at a corner of F* we can choose from a range of possible
derivatives.

64

We will use the derivative of the loss function below. It turns out that the
prediction error is a derivative of m with respect to p:

" fip) -2/e dF(p) -y = dpm(p,y)

So, a derivative of k(w) is (f(xt ■ w) — yt)xt.

3.10.2 Regret bounds

In order to bound the regret of the MAP algorithm for regression problems, we
need to find a gauge g so that k(w) > ^(g°(—l't(w)))2. We have already done
so for the special case of the identity link with squared loss: in section 3.7.2,
we showed that the allowable choices for g are the symmetric gauges such that
9°(xt) < 1 f°r all t. (Symmetric gauges are also called seminorms.)

The situation is similar for general link functions and their matching loss
functions. In this case, though, we must make one additional assumption: we
must bound how quickly the prediction yt changes when we change the raw
prediction ft.

So, we will assume that 3F(P\V) > \-(y *- f(p))2 for some A > 0. (This is
essentially a Lipschitz condition on /.) With this assumption, we can write

lt(w) = 3F(xt w\yt)

A2

> T(vt- -f(xt-w))2

But we saw above that l't(w) = (f(xt • w) -
such that Xg°(xt) < 1, then

■yt)xf. So, if g is a symmetric gauge

(yt - f(xt ■ w)f > ^9°im?

lt(w) > \g°(i»)2

But now we have proven

Theorem 3.3 Let F be a closed convex function with PF (p\y) > \-(y — fip))2,
Suppose that the functions h, I2, ■.. are of the form lt{w) = Up (yt\w ■ xt) for
given vectors xt and scalars yt. Pick a prior loss IQ and functions mi,m,2,...,
and suppose that lo,mi,m2, ■ ■ ■ satisfy the conditions of Lemma 3.1, so that the
MAP algorithm applied to these loss functions always produces a prediction wt
at each trial. Suppose that for allt, dmt{wt) is nonempty, m,f(wt) = h(wt), and
fnt{w) < lt{w) for all w. Write Lt = lo + 5Zi=i mt- Let the symmetric gauge g
be so that Xg°(xt) < 1 for all t. Finally, let the constants 1 > rji > 772 > ■ • • > 0
be such that

nt®LMo)>\{g(v-w)f

for all v and w and a € dLt(w). Then

T T

S h(wt) < I] T^—h(u) + —!— % (u|0)

65

for all u.

PROOF: Apply Theorem 3.2 to the functions l0, h,..., mi, m2,..., with at = 0,
using the gauge g and the learning rates rjt. D

While the size of the input vectors xt doesn't appear explicitly in this bound,
it affects the choice of g and therefore the allowed values of r)t. For example,
depending on the size of the input vectors, we might need to set g(w) to either
IMIi or 10|H|i. At the cost of introducing an extra parameter, we could have
written the theorem to allow us to set g(w) - ||iu||i no matter the scale of the
input vectors. For examples of the application of this theorem, see Section 3.11.

3.10.3 Multidimensional outputs

So far in our regression problems we have assumed that the target yt is one-
dimensional. Our proofs work equally well, though, if yt is selected from an
arbitrary vector space y. In that case, the parameter matrix wt will be a
linear mapping that takes xt to pt € y. The prediction link function / will be
the derivative of some convex function F on y, and the matching loss will be
®>F(pt\yt), so the derivative of lt(w) will be (f(wxt) - yt)xj.

The only part of the proof that requires some modification is the definition
of the gauge g. Since w is a matrix and xt and yt are vectors of possibly different
lengths, we need different gauges to measure the size of each one. (Previously
we had used g for w, g° for xu and | • | for yt.) So, we will assume that we
have symmetric gauges r and s so that r°(xt) < 1 and %■ (p\y) > \s(y - f(p))2.
Then we will define g by the relation

g(w) = sup s(wu)
{u\r(u)<l}

This g is called the matrix gauge for r and s. Since r and s are symmetric, so
is g. Also, if x and y are vectors with r°(x) = 1 and s(y) = 1, then g(yxT) = 1,
since siyx^u) = s(y)xTu < s(y)r°(x)r(u), with equality for an appropriately
chosen u.

With this choice of g, we have

\g{i'Mf = \ ■MW? = 7:9((f(wxt)-yt)xJ)2

= r°{xtf\s{f{wxt)-ytf

< BF(wxt\yt)

= !*(«>)

so Theorem 3.3 applies with A = 1. (To achieve the effect of varying A we can
simply rescale the gauge s.)

For example, if / is the identity prediction link (so that F(y) = ±yTy and
we can take s to be Euclidean distance) and ||xt||2 < 1 (so that we can take r
to be Euclidean distance also), then g(w) will be the matrix 2-norro ||w||2. If

66

we now take l0(w) = § £f • w2
tj, then \Dlo(v\w) > \g(v - w)2, so we can take

* = *•
Often we will take each coordinate of / to be one of the one-dimensional link

functions described above. This kind of link function decomposes the multiple-
output prediction problem into several single-output problems which share a
parameter vector. On the other hand, sometimes we may know about depen-
dencies among the components of the output vector. In this case we can take
advantage of our knowledge by picking a prediction link function that encodes
these dependencies. For example, if we have reason to believe that the output
vector has covariance matrix E, we can select the link y = Ep with its matching
loss |yTE_1y - yTp + |pTEp.

3.11 Linear regression algorithms

In this section we will analyze several gradient-descent-like algorithms for lin-
ear regression: standard gradient descent and two exponentiated gradient algo-
rithms from [KW97] called EG and EG^1. These algorithms are all generalized
linear regression algorithms, and therefore MAP algorithms.

In linear regression problems, the loss on trial t > 1 is k(w) = ©/, (w\0) =

|(t/t — xt -w)2. This is the loss function for a generalized linear regression model
using the identity prediction link with its matching loss function, the squared
error. The algorithms differ only in their choice of prior loss l0-

We will bound the regret of each algorithm by applying Theorem 3.3. Be-
cause k for t > 1 always has the form given above, we can take A = 1 in
Theorem 3.3; so the main part of the analysis of each algorithm will be to find
appropriate seminorms g and g° with which to measure the parameter vectors
Wt and the input vectors xt-

First consider the gradient descent algorithm for linear regression, defined
by the update

wt+i = wt + T](yt - wt ■ xt)xt

Gradient descent is a GGD algorithm, given by the choice IQ(W) = ^IMIi (or

l0 = jHlw-wilH if we want a starting weight vector wi ^ 0). We showed above
that if \\xt\\2 < X for all t then we can take g°(x) = jf ||a;||2 and r\t = X2r] in
Theorem 3.3. The result is that

T 1 T 1

|>K) < jr^D'W + a,(i-W""'

Next consider the exponentiated gradient algorithm- EG is a GGD algorithm
given by the choice lo(w) = ^-H(w), so its update is

Vt+i,i = wt,i exp(7?(y - wt ■ xt)xt,i)

vt+l,i
wt+i,i — ■?=;

L,i vt+i,j

67

To analyze EG, we will set X to be the maximum span of any of the input
vectors, that is, ||zi||Sp < X where

||x||sp = maxzj - mmxi
i i

It is easy to check that || • ||sp is a seminorm. We can bound the polar of
the span seminorm by splitting its argument vector into components parallel
and perpendicular to e = (1,1,..., 1)T. We have ||e||sp = 0, so ||e||°p = oo.
On the other hand, if x has no component along e, then ||a;||sp > Wx]^, so
Ikllsp < IMIi < 1Mb- That means that, for any v and w and a € dH(w),

®>H(v\a) >2(||v-tü| \2
sp/

To see why, remember that by assumption dH(w) is nonempty, so w must be in
the unit simplex. So, depending on whether v is in the plane containing the unit
simplex, either v - w has a nonzero component along e, in which case BH (v\a)
is infinite, or v - w is perpendicular to e, in which case 1% > 2\\v - w\\\. In
either case the result follows. So, we can take g°(x) = £ ||a;||8p and r}t = \X2rj
in Theorem 3.3 and conclude that

The above results can be compared to to Lemmas 5.2 (for GD) and 5.9
(for EG) in [KW97]. Unfortunately, our bounds here are slightly weaker than
the ones in [KW97]. We do not believe that this is due to a weakness in our
framework; instead we believe that with some additional work our theorems
could be sharpened so that they are a strict generalization of the known results
for linear regression with GD and EG.

After deriving the results mentioned above, the authors of [KW97] perform
an additional step: they adjust the learning rate rj so that the two terms in the
regret bound have comparable coefficients. We have not taken this step.

Finally consider the EG* algorithm. Just as in [KW97], we could prove
bounds on EG111 by reducing it to EG. Instead, we will sketch how to find the
prior l0 that yields the EG^11 algorithm. Finding this prior is important both
because it increases our understanding of £0^= and because it is a good first
step towards a direct proof of the regret bound for EG*.

The EG* algorithm can be defined by its parameter link function, which is
(up to scaling) given by the mapping w = f(x) defined as

„„ exp(a;i) - exp(-Xi)
uJi —

EJ(exp(a;j)+exp(^a;j))

The prior loss function l0 for EG*, and its convex dual 1%, are determined up
to scaling by this Jink function. We can find l%(x) by integrating / along any
path from the origin to x.

68

To perform the integral, we will choose a path with n axis-parallel segments:
one which increases the first coordinate of x from 0 to its final value X\, then
another which increases the second coordinate from 0 to its final value x2, and
so forth. The integral along the ith segment (which varies the ith coordinate of
a;) is

fXi exp(t) - exp(-t)

/ Jo
-dt

exp(i) + exp(-t) + kt

where the constant
t-i

hi =]P(exp(a:.,) + exp(-Xj))
j=l

is determined by the (constant) values of the other n — 1 coordinates of x along
the ith segment. The result of this integral is

—Xi - ln(2 + hi) + ln(l + exp(2zj) + kt exp(aij))

Summing this expression over all n path segments gives

lo(x) = ^2(~xi ~ M2 + ki) + M1 + exp(2xj) + k, exp(xi)))

For example, if n — 2,

IJ(i) = -xi-x2-ln4 + ln(l+ exp(2a;2) + (exp(xi)+exp(-a;1))exp(a;2))

— ln(2 + exp(zi) -f-exp(-xi)) + ln(l + 2exp(xi) + exp(2xi))

A plot of this function is in the left panel of Figure 3.7; it looks like a rounded-
off version of the L^ norm. The right panel of Figure 3.7 shows a plot of the
three-dimensional version of IQ, made by holding one argument constant at 7
while varying the other two in [—10,10]. In other words, we have plotted IQ on
a two-dimensional slice of R3. This plot looks like a rounded-off version of the
same slice of the L<x, norm on M3. The characterization of ZQ as a rounded-off
version of the Loo norm makes sense, since EG^ restricts wt to have bounded
L\ norm and the dual of S(x | ||x||i < 1) is the L^ norm.

3.12 Discussion

We have presented a unified framework for deriving worst-case regret bounds for
a wide class of learning algorithms. These algorithms include weighted majority;
gradient descent and generalizations of gradient descent such as exponentiated
gradient; linear and logistic regression; and inference of the natural parameter in
an exponential family. Because we have wherever possible avoided assumptions
such as differentiability of the loss functions, our framework also includes a wide
variety of new algorithms which we have not fully explored.

Our unified treatment sheds light on the relationships among these methods,
and it provides a recipe for designing and studying new learning algorithms. For

69

10-1°

Figure 3.7: The dual of the potential function for BG±,

example, we showed that both the gradient descent and exponentiated gradi-
ent algorithms for linear regression are MAP algorithms. By casting them in
this common framework, we revealed that the only difference between these two
algorithms is their choice of prior loss function. In addition to allowing a com-
mon proof of the regret bounds for these algorithms, this analysis suggests that
we can design new linear regression algorithms simply by picking new priors.
These priors can express known bounds on the parameter vector (for example,
the prior kw2 + 6(w\C) yields the gradient projection algorithm with domain C)
or preferences for particular kinds of parameter vectors (for example, the prior
of the EG± algorithm prefers vectors with low L\ norm).

Our results also suggest new applications for old algorithms. By avoiding
assumptions such as independence of training examples, we have justified the
use of these algorithms in situations where they might not have been considered
before.

70

Chapter 4

CONVEX ANALYSIS
AND MDPS

71

72

In this chapter we will apply the ideas of convex analysis and statistical in-
ference to the problem of approximating the value function of a Markov decision
process. In Sections 4.1 through 4.4, we will show how to represent an MDP as
a convex program. This transformation will allow us to apply the well-known
theory of convex programming to the problem of finding its value function. In
Section 4.5 we will show how to represent an MDP as either a maximum like-
lihood or a maximum entropy problem. This transformation will allow us to
apply the well-known theory of statistical inference to the problem of finding
its value function. In Section 4.6, we will describe several ways we have tried to
introduce approximations of the value function into these two representations
of an MDP, In Section 4.7 we will describe an implementation of one of these
algorithms. Finally, in Section 4.8, we will describe some experiments we have
done with this implementation. While the experiments show that this particular
algorithm does not improve on the best existing ones, we hope that the ideas of
this chapter can be incorporated into other algorithms.

4.1 The Bellman equations

We saw in Chapter 1 that the value function for an MDP is the unique solution
to the Bellman equations

v(x) = minE(c(ar, a) + jv(S(x,a)))

(base cases such as u(©) = 0 may be necessary if 7 = 1). As pointed out in for
example [Ros83, p40] or [Ber76, p248], we can rewrite the Bellman equations as
a linear program by noticing:

• If there's a deterministic action a that takes the agent from state x to
state y with cost c(x, a), then v(x) < ^v{y) + c(x,a).

• Similarly, if there's a stochastic action a that takes the agent from state
x to a probability distribution p over the state space, then v(x) <fp-v +
c(x, a). The notation p ■ v means V v(y)p(y); in other words, p • v is the
expectation of the value of the next state.

• The value function is the pointwise largest function v satisfying these
constraints along with any base cases.

The resulting linear program is

maximize sTv

subject to Ev + c > 0

where E is the edge adjacency matrix for our MDP (defined in Chapter 1), c
is the cost vector, and s is any vector with all components positive. For this
section we will assume that s has all components equal to 1; in Section 4.2.3 we
will attach a meaning to the choice of objective vector-

73

maximize x + y + z + g subject to

-x +y +1 > 0
-x +z +2 > 0

-V +9 +1 > 0
-z +g +1 > 0

-9 > 0

(a) (b)

Figure 4.1: How to turn an MDP into an LP.

Figure 4.1 shows an example of translating a simple MDP to a linear pro-
gram. (To avoid clutter we have adopted the shorthand of writing just x instead
of v(x) to mean the value of state x.) This MDP happens to be undiscounted and
deterministic, but the translation works just as well for discounted or stochas-
tic MDPs. There is one constraint in the program (that is, one row of E) for
each edge or state-action pair in the MDP. There is one variable in the program
(that is, one column of E) for each state in the MDP. For example, the row
-x + y + 1 > 0 corresponds to the edge from state x to state y with cost 1. If
there were a unit-cost action that moved the agent from state x to state y with
probability .7, and from state x to state z with probability .3, the corresponding
constraint would be -x + .7y + .3z + 1 > 0.

The optimal solution to this MDP is (x,y,z,g) = (2,1,1,0). In linear pro-
gramming terminology, the elements of the vector Ev + c = (0,1,0,0,0)T are
called slacks; in dynamic programming terminology, they are called advantages
or Bellman residuals. In either case, the edges in the optimal policy are the
ones whose slack is 0. That means that an optimal policy for the MDP is the
same as an optimal basis for the linear program. (This is a consequence of the
property called complementary slackness.)

4.2 The dual of the Bellman equations

4.2.1 Linear programming duality

Every linear program can be paired with another linear program called its dual.
The original (or primal) and dual programs are different views of the same
problem: the optimal values of their objective functions are the same, and
knowing a solution to one makes it much easier to find a solution to the other.

We can derive linear programming duality by appealing to duality between
convex functions. Consider the linear program

minimize cTx subject to Ax + b = 0, x > 0

74

We can eliminate the equality constraints by adding a vector y of Lagrange
multipliers. So, solving the linear program is equivalent to finding

minmax([cTa; + yr(Ax + b)] + 6(x\x > 0)) (4.1)
x y

The notation S(x\x > 0) is defined in Chapter 3; it stands for the function which
is zero if x > 0 and oo otherwise. The expression in square brackets is called
the Lagrangian of the linear program. If the program has a finite solution, then
we may interchange the order of minimization and maximization to get

maxmin([cTx + yT(Ax + b)] + S(x\x > 0))
v x

— — min max[—c^x — y1Ax — yb — 6(x\x > 0)]
y x

= — min — yTb + maxf—xT(ATy + c) — 6(x\x > 0)]
y L x J

= -min[-t/T& + (6{x\x > 0))*(-(ATy + c))
y

= max[yT6 - S(y\ATy + c > 0)]
y

In other words, we may find the optimal objective value for our original linear
program by solving the new linear program

maximize bTy subject to ATy + c > 0

We define this new linear program to be the dual of our original program. If we
replace ATy + c > 0 by ATy + c = z, z > 0 and then apply the same sequence
of transformations, it is easy to verify that the result is equivalent to the primal
program.

4.2.2 LPs and convex duality

When thinking about duality between linear programs, it is often useful to re-
member the specialization of the theory of convex duality to indicator functions.
As defined in Section 3.2, the indicator function for a convex set C is

K*\c) = { ° xeC
oo x & C

This function is zero inside of C and infinite outside of C, so if we want to
constrain the variable a; in a minimization problem to be in the set C we can
add 8(x\C) to the function to be minimized.

The simplest convex sets C are the cones. A cone is the set of all positive
linear combinations of a set of vectors gi called its generators. If we write G for
the matrix with columns gt, then C = {GA|A > 0}. Some examples of cones are
the origin (generated by the empty set of generators), any linear subspace, and
the two cones shown in Figure 4.2. If the set of generators is finite, then C is a
closed convex set.

75

Figure 4.2: Two cones. Heavy lines show a set of generators for one of the cones.

The polar of a cone C, written C°, is the set of vectors which make either a
right or an obtuse angle with every vector in C. That is,

C° = {x\(VyeC)x-y<0}

The polar is always a closed cone. For closed cones, the operation of taking the
polar is its own inverse: the polar of the polar of a closed cone is the cone itself.
The two cones in Figure 4.2 are polar to each other. As the figure shows, the
extreme vectors of a cone are the face normals of its polar. Polarity between
cones is an example of duality between convex functions: if C is a cone, then
the dual of the indicator function S[x\C) is S(x\C°).

We can represent an arbitrary convex set in En as the intersection of a cone
in E"+1 with a fixed plane. For example. Figure 4.3 shows the representation
of a triangle in E2 as the intersection of a cone and a plane in E3. Usually
we will use the same coordinate system for En+1 as we did for E™, with the
addition of one extra coordinate (call it t). We can then identify E" with the
plane t = 1 in En+l, so that we can represent the convex set C by the cone
{(tx,t)\t > 0,x e C}, This cone is called the homogeneous representation
of C. If C is an affine set, then we can use either the regular homogeneous
representation or the set {(tx,t)\t € R,x £ C} called the affine homogenous
representation of C.

We can now see that the familiar notion of geometric duality is a consequence
of polarity between convex cones. Two affine subspaces C and D are defined to
be geometrically dual if x ■ y = 1 for all x e C and y e D, while two arbitrary
convex sets are defined to be geometrically dual if x ■ y < 1 for x € C and y e D.
For example, the line a ■ x = 1 and the point a are dual affine subspaces in E2,

76

Figure 4.3: Homogeneous representation of a triangle.

while the unit cube and the unit octahedron are dual convex sets in E3. If C
and D are geometrically dual convex sets, then the homogeneous representation
of C is the polar of the homogeneous representation of D, reflected along the t
axis. If C and D are geometrically dual affine sets, then the affine homogeneous
representation of C is the polar of the affine homogeneous representation of D,
reflected along the t axis.

We can take advantage of the connection between convex duality and cone
polarity to analyze how operations on a cone change its polar. For example,
intersection of two cones corresponds to addition of their indicator functions.
The dual operation for addition is infimal convolution, defined as

(/ ° 9)(x) = inf{/(a) + g(b)\a + b = x}

If / and g are indicator functions for the convex cones C and D, then f(a)+g(b)
will be zero if a G C and b 6 D, and infinite otherwise. So, (/ Og)(x) will be
zero iff x e C + D. That means that the polar of C° <1D° (corresponding to
/* + g*) is C + D (corresponding to /□<?); in other words, the operations of
intersection and set sum are polar to each other.

For another example, if C and D are the homogeneous representations of
convex sets, then we can write the intersection of C°+D° with the plane t = — 1
as the union of

X(C° D(t = -1)) + (1 - X)(D° n(t = -1))

for A 6 [0,1]. In other words, the geometric dual of the intersection of two
convex sets is the convex hull of the geometric duals of the sets.

77

The connection between a cone and its polar can help us understand the
connection between a linear program and its dual. The relationship between a
linear program and its dual is clearest for the degenerate linear program

find x ^ 0 such that x > 0, Ax = 0 (4.2)

This problem, called the homogeneous linear inequality problem, can be thought
of as a linear program whose constant vectors are both zero. It is equivalent to
asking whether there is an x ^ 0 for which the convex function

S(x\Q) + 6(x\Ax = 0) (4.3)

is zero, where Q is the nonnegative orthant. The dual problem to (4.2) is

find x ^ 0, y such that x < 0, x = ATy

which corresponds to the question of whether there is an x ^ 0 for which the
convex function

S(x\ -Q)+ 8{x\x = ATy) (4.4)

vanishes.
The expressions (4.3) and (4.4) are almost, but not quite, convex duals of

each other. The dual of S(x\Q) is S(x\ - Q), while the dual of S(x\Ax = 0) is
S(x\x = ATy). But the dual operation to addition is infimal convolution, so the
convex dual of (4.3) is

S(x\-Q)nS(x\x = ATy)

which is the indicator function of the set -Q + {x\x = ATy}. In other words,
there are four different convex sets associated with the system of inequali-
ties (4.2): the intersection of the positive orthant with the linear constraint
set, the sum of the positive orthant and the constraint set, the intersection of
the dual of the positive orthant with the dual of the constraint set, and the sum
of the dual of the positive orthant and the dual of the constraint set. Two of
these four sets are the feasible regions for (4.2) and its dual, while the other two
are the polars of the feasible regions.

For general linear programs the situation is similar: the difference is that
instead of the indicator 8{x\Ax = 0) we have the function 6(x\Ax + b = 0) + cTx,
which is not an indicator function. (It is called a partial affine function, since
its domain is an affine space and it is a linear function on its domain.) Still,
we can construct four different convex functions by applying either addition or
infimal convolution to either the indicators of Q and the partial affine function
or their duals. Two of these functions represent the feasible region and objective
function for the linear program and its dual.

4.2.3 The dual Bellman equations

The dual of the Bellman equation linear program is

minimize cT/

78

minimize fxy + 2fxz + fyg + fzg subject to

fxy Jxz T-l — U

fxy ~fyg i ■*• = ^
fxz -fzg +1 = 0

fyg +fzg ~fg +1 = 0

fxyi fxz, fyg, fzg, fgdlv

Figure 4.4: The dual of the Bellman program.

subject to ETf + s = 0

/>0

This linear program has one equality constraint (that is, one row of ET) for
each state of our MDP, and one variable (that is, one column of Er) for each
edge or state-action pair of our MDP. The equality constraint for state y is

x,a a

We can interpret fxa as the expected number of times we visit the edge (x, a) if
we follow one trajectory starting from each state. (If there is a discount factor,
then fxa is the expected discounted frequency.) We will call fxa the flow along
edge (x,a). Under this interpretation, the equality constraint for state y tells
us that we must enter y exactly as often as we leave it. Since the objective
function fTc is equal to the expected cost of visiting the edge (x, a) a total of
fxa times, the dual Bellman program tells us to minimize the total expected
cost of following one trajectory starting from each state.

Clearly it is not necessary to start exactly once in each state. If s is a vector
of positive starting frequencies, so that we start sx > 0 times in state x, then
the equality constraint for state y becomes

/ jPaxyfxa + sy — / , f\ ya

The optimal vector of flows may be different for different choices of s, but the
linear program will be feasible for any choice of s > 0, The fact that any positive
vector of starting frequencies produces a feasible dual program is equivalent to
the fact that any positive objective vector produces a bounded primal program.

Figure 4.4 shows the dual Bellman equation program for our example MDP
from Figure 4.1. The optimal solution to this program is (fxy, fxz,fyg, fzg, fg) =
(1,0,2,1,4). Just as with the primal program, if we know the optimal / we can
find the best edge out of any state; any edge with positive flow will do.

79

4.3 Incremental computation

The previous sections describe how to convert a Markov decision process to a
linear program. This transformation provides a simple algorithm for finding the
value function of a known MDP: convert it to a linear program, then solve the
linear program with, say, simplex or a logarithmic-barrier method. For some
benchmarks of this algorithm versus value iteration, see [TZ93, TZ95, TZ97].

Often, though, we don't know the entire MDP in advance; or, even if we do
know it, it is so large that we can't afford to examine every state even once. In
either of these cases, we need an incremental version of the above algorithm.
That is, we need to be able to convert a partly-known MDP into a linear program
in such a way that when we solve the LP we end up with something close to the
correct value function.

Incremental computation often goes hand in hand with approximation: if our
MDP is so large that we need to look at it bit by bit, then we will often also need
to use a compact representation for its value function. For this section, though,
we will just worry about incremental computation, and leave approximation for
Section 4.6. In other words, we will suppose that our MDP is small enough that
we could solve it exactly if we knew it, but that we are finding out about it bit
by bit.

There are at least two natural orders in which to reveal an MDP one piece
at a time: edge by edge or state by state. Since every edge corresponds to a row
of the adjacency matrix E, and since every state corresponds to a column of E,
these two orders correspond to revealing E row by row or column by column.

We can represent either of these two orders, and many more, by writing Et,
Ct, and st for our best approximations to E, c, and s at time t. For example,
if we are finding out about our MDP edge by edge, then Et+1 - Et will have
nonzero entries in exactly one row.

With this notation, it is natural to suppose that the sequences ft and vt

defined by the linear programs

minimize cjft subject to Ejft + st = 0, ft > 0

maximize sjvt subject to Etvt + ct > 0

might be good approximations to the optimal flows and values / and v respec-
tively. Unfortunately, ft and vt do not necessarily converge to / and v even if
Et -4 E, ct -» c, and st ->• s. For example, a small change in ct can cause a
discontinuous jump in ft if it causes the solution of the flow program to move
from one corner of the feasible region to an adjacent one,

> There are, however, some convergence results that do hold under mild con-
ditions if Et -> E, ct -> c, and st -> s as t -> oo. For example, if the primal
and dual feasible regions are bounded and the primal and dual optima are not
degenerate, then ft -» / and vt -»■ V-

80

Figure 4.5: A Markov decision process with just one state.

4.4 Soft constraints

Consider the MDP shown in Figure 4.5. It has just one state; from this state
the agent may choose any of k actions, with costs c(l)... c(k), each of which
end the trajectory. The primal and dual linear programs for this MDP are

maximize v subject to v < c(l), v < c(2),..., v < c(k)

minimize cT/ subject to /J/» = 1>/ > 0
i

where c is the vector with elements c(l).. .c(k). If c(i) is the smallest element
of c, then the solution to the value program is v = c(i), while the solution to
the flow program is a vector / with a 1 in the ith position and zeros elsewhere.

Let ci, C2,... be a sequence of vectors converging to c, and let vt and ft be
the solutions to the linear programs that result from replacing c with ct in the
value and flow programs above. Then vt will converge to v, and ft will converge
to / as long as there is a unique smallest element of c.

Unfortunately, though, vt may not be the best estimate of v given c4. As
pointed out in [TS93], if the elements of ct — c are random variables with zero
mean, then vt will tend to underestimate v. The reason for this behavior is that
the errors in the components of ct can cause the smallest element of Ct to have
a different index than the smallest element of c. The underestimation will be
most pronounced if there are several elements of c that have almost the same
value as the smallest element.

We can at least partially fix this problem by "softening" the inequality con-
straints in the value program, so that vt is allowed to be slightly larger than the
smallest component of ct. To do so, we will pick a penalty function I and scaling
factor fj, > 0 and replace the constraint vt < ct,i by the penalty ßl(Vt~°'''). The
idea is that l(x) should be small for negative values of x and large for positive
values of x, so that there is a penalty for making vt too much larger than the
smallest component of Cj. The scaling factor lets us specify how much uncer-
tainty there is in the components of ct: the smaller \i is, the faster the penalty
grows as vt increases.

81

More precisely, let / be any convex function with l'(x) ->• 0 as x -*■ -oo and
l'{x) -»• oo as x -»■ oo. As in the last chapter, /' stands for any subgradient of
Z. If domdZ is not all of R, then we extend /' to E by taking l'(x) = -oo for x
to the left of Aomdl and l'[x) = +oo for x to the right of domdZ. Given such
a penalty function I, we define the soft value program with parameter u > 0 to
be

E, I'v — c(i)\
I — 1

If we take l(x) to be 6(x\x < 0) then the soft value program is identical to the
value program for any ß. Usually, though, we will take l{x) to be a function
that approaches its limits more gradually, say l(x) =ex. In this case the value
of \i controls how hard or soft the constraints are: smaller values of \i result in
harder constraints. In fact, under mild conditions the solution to the soft value
program will approach the solution to the original value program as \i ->■ 0.

The dual of the soft value program is the soft flow program

minimize cT/ + A* $^ **(/») subJect to $^/« = 1
i i

The terms l*(fi) serve as barriers to push the elements of / away from zero,
so the constraint / > 0 is no longer necessary. (Because of this fact, /x is
usually called the barrier parameter.) For example, if l(x) = 8{x\x < 0) then
l*(x) = 6{x\x > 0); or if l{x) = ex then l*(x) = xInx - x. More generally, since
l'(x) ->0ass-> -oo, l*{x) will be equal to oo for x < 0, and since l'(x) -> oo
as x -> oo, l*(x) will be finite for any positive x.

The barrier terms tend to push the components of / away from zero, while
positive components of c tend to push the corresponding components of / to-
wards zero. So, the largest component of / will correspond to the smallest
component of c. The larger fj, is, the closer / will be to the uniform distribu-
tion, and the smaller /z is, the more / will concentrate its weight on the smallest
components of c. In fact, just as with the soft value program, under mild con-
ditions the solution to the soft flow program approaches the solution to the
original flow program as \i -> 0.

Just as in the previous section, if a, c2,... is a sequence of vectors converging
to c, then we can define an incremental algorithm for computing / or v by
substituting ct for c in the flow or value programs. (Because we have assumed
a particular form for the edge matrix we do not need to reveal it incrementally,
and because there is only one state we do not need to reveal the vector of
starting frequencies incrementally.) We do have to make one additional choice,
though: we must choose a sequence of barrier parameters \it converging to \x.
(In particular, to solve the original linear program with hard constraints, we
should have /xt -* 0.) Then we can write the incremental soft flow program as

minimize cjft + iH^VUt,i) subject to ^/M = 1
i i

where ft<i is the ith component of ft. The incremental soft value program can
be written similarly,

82

We have been using a simple linear program as an example, but we can
soften the constraints of an arbitrary linear program in the same way. To the
linear program

minimize cT/ subject to ETf + s = 0, / > 0 (4.5)

corresponds the softened program

minimize cT/ + f»X!l*(/*) subJect to ETf + s = 0 (4.6)

with its dual

maximize s v — \x > / I I

Linear programs are invariant to scaling; that is, for any k > 0 the program

minimize kcT f subject to kETf + ks = 0, / > 0

has the same primal and dual solutions as (4.5). In order to make the soft
programs invariant to scaling, we must scale \i as well; the program

minimize kcTf + fc^E **(/«) subject to kET f + ks = 0
i

has the same primal and dual solutions as (4.6).

4.5 A statistical interpretation

While there are many possible choices for the penalty function / in the soft
value and flow programs, picking l(x) = ex for the MDP of Figure 4.5 results
in a familiar algorithm. Since l*(x) = x In x - x, the soft flow program can be
written

minimize cT/ + ßH(f)

^(/) = E^ln^+5(/iE^ = 1)
This minimization problem is almost the same as the one that yields the WM
algorithm from the previous chapter. To complete the analogy, write xt for the

vector of expert losses on trial t and let ct = \Xt = \ YliZi xt- Then if we set
Ht = f, we have

ft = argmin(c?'/ + fitH(f)) = argmm(F(/) + r)Xt)

so the incremental flow programs produce the same series of predictions as the
WM algorithm.

83

These predictions also have a simple Bayesian interpretation. Let us suppose
that the experts are predicting a sequence of binary random variables yt. Sup-
pose also that there is a single best expert, so that the true outcome is always
equal to the best expert's prediction plus some random noise. Our task is then
to distinguish between the n statistical models "expert i is best." Write pw for
the prior probability that expert i is best, and pM for the posterior after seeing
the first t-1 examples. Write p(y\y) for the probability of outcome y given that
the best expert predicts y. Then we can compute the posterior probabilities of
our models with Bayes' rule:

Pt+u oc Pt,iP{Vt\Vt,i)

So, if we initialize X0ji = -lnp0,j and update

Xt+i,i — Xtti + xt,i

where xt,i = -\np(yt\ytti), then the posterior probabilities at each time step
are just pM = exp(Xt,i)/ ^ exp(Xt>j), which are the same as the predictions
of the WM algorithm with learning rate 7/ = 1.

More generally, we can interpret the soft value and flow programs for arbi-
trary Markov decision processes (or in fact any primal and dual pair of softened
linear programs) as statistical estimation problems. The remainder of this sec-
tion explores this connection in more detail.

4.5.1 Maximum Likelihood in Exponential Families

One of the simplest statistical inference methods is maximum likelihood: given a
family of probability distributions, pick the one which maximizes the probability
of an observed sample. More formally, suppose we have a set X of possible
outcomes. (We will assume X is finite, but much of the following carries over
to infinite sets of outcomes.) Write fx for the normalized frequency of outcome
x E X in the observed sample. Suppose that our family of distributions is
indexed by a parameter vector 9, and write fx(6) for the predicted probability
of outcome x given 6. Then the maximum likelihood problem is to find

arg max J^ fx In fx (6) (4.7)
x€X

that is, to find the 6 which maximizes the log-likelihood of the observed sample.
Often the distributions fx(9) will form an exponential family, that is, a set

of distributions for which we can write

fx(9) = expire + hx+ g{6)) (4,8)

Many well-known sets of distributions are exponential families, for example the
normal, gamma, exponential, chi-squared, Pirichlet, multinomial, and Poisson
families,

84

In Equation 4.8 the vectors tx and scalars hx, one for each possible outcome
x € X, together define the exponential family. The function g{6) is called the
cumulant generating function, and it is determined by the requirement

(w) £/*(#) = 1 <4-9)
x€X

We can interpret each component of tx as a relevant feature or statistic about
outcome x. For example, if A" is a set of real numbers, we can associate the
features x and x2 with outcome x. Then we can set hx = 0, and the result will
be a family of discrete normal distributions. The constants hx allow us to define
subfamilies: for example, we can define a family with fixed variance by setting
hx to a multiple of x2 and using just the single feature x.

One reason exponential families are important is that their maximum like-
lihood problems can be written as convex programs. By substituting (4.8) into
(4.7) and using (4.9) to constrain g to be equal to g{6), we can see that the
maximum likelihood problem for an exponential family is

arg max y^ fx(tj0 + g) subject to y^ exp(t^6 + hx + g) = 1
,S x€X x€X

The above is not a convex program, since the equality constraint does not in
general define a convex set. However, it is equivalent to the convex program

arg max]T fx(tj0 + g) *-]T] exp(tj6 + hx + g)
'9 x€X x€X

To see why, we can explicitly perform the maximization with respect to g by
differentiating and setting to 0:

0 = £/* ~ £ «*P(£* + *>* + 0)
x€X x€X

1 =]T exp(*j0 + hx + g)
x€X

This expression is exactly the equality constraint from the maximum likelihood
problem, and substituting it back into the maximization gives us the correct
objective function.

4.5.2 Maximum Entropy and Duality

We can gain some insight into the maximum likelihood problem for exponential
families by noticing that it is the convex dual to another problem, called linearly
constrained maximum entropy. As mentioned earlier, the maximum likelihood
problem for exponential families is to find

^S^]C f*(t*& + S) ~]C exP(t^6 + hx+9)
'9 x€X xex

85

We can write this problem more compactly by making two slight modifications.
First, if we redefine tx by adding an extra component at the end which is
always 1, then we can represent g as the last component of 6 instead of writing
it separately. Second, if we define a matrix T whose rows are the feature vectors
tx, we can write the problem in matrix notation. With these two modifications
the problem becomes

arg max fT6 - V exp(T0 + h)
8

where for any vector x the notation exp(x) means the vector whose components
are exp(zj) and ^x means J2ixi-

The constrained maximum entropy problem makes no reference to 6 or the
exponential family. Instead it is defined over all probability distributions which
agree with / on the expected value of each feature. Subject to these linear
constraints, we wish to find the distribution which maximizes entropy with
respect to some known distribution q. In other words, we want

arg "Kjg £ /* k /* ~]£ /* ln Qx subject to TT/ = TTf (4.10)
~ xEX x€X

Since / is normalized, and since we added an extra column of Is to T, one of
the equality constraints in (4.10) forces / to be a probability distribution.

To convert maximum entropy into maximum likelihood, we need to use a
vector of Lagrange multipliers (call it A) to eliminate the equality constraints:

arg mm max £ fx In fx - £ fx In qx + AT (TT/ - TTf)
xex xex

Then we can dualize by interchanging the order of minimization and maximiza-
tion and performing the minimization explicitly. Since the minimum must occur
at an interior point of the region / > 0, we can find it by setting derivatives to
zero:

0 - ST dfx
£ fxlnfx - £ fxlnqx + AT(TT/-TT/)

.xex xex

= l + \nfx-lnqx~\
Ttx

fx = exp(XTtx + In qx - 1)

Substituting this value of / back into the optimization problem and cancelling
terms gives (note that we have performed the substitution in two stages to make
the cancellations clearer):

arg max £ [M^t, + \nqx - 1) - /„ lnqx + XTtx(fx - fx)]
xex

= argmax JT [-/„ + ATts£]
A xex

argmax - J2 exP(TA +1" 9 - 1) + PTX
x^X

86

Finally, putting hx = In qx — 1 and 6 = X completes the transformation from
maximum entropy to maximum likelihood.

4.5.3 Relationship to linear programming and MDPs

We can interpret the constrained maximum entropy problem (4.10) as a linear
program plus an entropy barrier term. In fact, the only differences between
Equation 4.6 with l*(x) = zlna; and Equation 4.10 are that the barrier term in
Equation 4.10 has a fixed weight, the matrix T in Equation 4.10 is required to
have a column of all ones, and the vector / is required to sum to 1. The first
difference is not a loss of generality, since we can always rescale any soft linear
program so that the barrier term has weight 1.

The required column of ones in T and the normalization of / are a loss
of generality compared to Equation 4.6, but we can remove these restrictions
from Equation 4.10 without damaging its statistical interpretation. Allowing
an arbitrary / > 0 just means that / no longer has to sum to 1; we can
interpret such an / as encoding both a probability distribution and a sample
size. The constant column in T serves to make the sample size of / match
the observed sample size from /, just as any other column of T serves to make
some other feature of / match its observed value from /. So, a matrix T
without a constant column corresponds to a statistical estimation problem in
which we have not observed the sample size. While such statistical estimation
problems are unusual, they do exist. In fact, Markov decision processes are
a good example: in an MDP we observe how often trajectories start at each
state, but we do not observe how often we should visit each transition, since the
latter depends on which policy we follow. So, the sample size (that is, the total
number of transitions we visit while following an optimal policy) is just another
parameter that we can estimate from the observed data. Trying to constrain
the sample size of / to match that of / would be a mistake: for example, in a
shortest-paths MDP this constraint would prevent us from considering exactly
the policies that we want to consider, the ones that visit fewer states than our
sample trajectories do.

4.6 Introducing approximation

Section 4.4 discussed how we can soften the constraints in the linear program
representation of a Markov decision process. This softening combats the sys-
tematic errors introduced by random fluctuations in our estimates of the coeffi-
cients. The amount of softness is controlled by the barrier parameter fi. As we
get better estimates of the coefficients, our goal is to reduce ß to zero.

In this section we will discuss how to introduce an approximate representa-
tion of the value function into the linear program for a Markov decision process.
These two modifications, softening and approximation, are complementary: ap-
proximation introduces errors into the coefficients, and we can minimize the
effects of these errors by a process related to softening,

87

maximize v{A)

subject to

v(0) < 0

v(l) - v(0) < 1

v(2)-v(l) < 2

v(3) - v(2) <

v{<±) - v(S) < 2

Figure 4.6: A linear program with its true solution and two approximate solu-
tions.

4.6.1 A first try

Suppose that we have decided on a particular approximate representation for
our value function, say v = Aw. Here w is a vector of adjustable parameters and
A is a matrix whose columns are a set of basis vectors for representing v. The
matrix A will have one row for each state in our MDP and one column for each
basis vector. This notation encompasses any representation for v that is linear
in its parameters, including linear or polynomial regression, splines, wavelets,
CMACs, and many others.

The simplest way to introduce this approximate representation into our lin-
ear program is just to substitute Aw for v everywhere. Doing so yields the
following modification of the value program

maximize sTAw subject to EAw + c > 0 (4.11)

with the dual

minimize cT / subject to AT(ETf + s) = 0, / > 0

The solution to Equation 4.11 can be a good approximation to the true value
function v, particularly if the span of our basis function matrix A contains a low-
error approximation to v. For examples of some MDPs for which this approach
works well, see [TZ93, TZ95, TZ97].

On the other hand, if the best representations in the span of A have moderate
error, then the quality of the solution we find with Equation 4.11 can degrade
rapidly. For example, Figure 4.6 shows the linear program corresponding to a
simple MDP, along with two approximate solutions. The true solution is shown
as a solid line. If we substitute in the representation v{x) = w\x + w0 we
might hope to get the approximate solution shown in long dashes. But instead,
Equation 4.11 yields the solution shown in short dashes. The reason is that

88

the inequality v(3) — v(2) < — 1 constrains the slope wi to be no greater than
—1. The solution in long dashes violates this constraint (its Bellman residual
along this edge is negative) and so is not feasible. More generally, if our basis
matrix A has k columns, the solution to Equation 4.11 will satisfy the k most
restrictive constraints exactly and leave the others slack. If our approximate
representation for v is inflexible enough, it is even possible that Equation 4.11
will have no solutions.

To see what the problem is with Equation 4.11, we can turn to the interpre-
tation of a linear program as a game. As Equation 4.1 shows, a linear program
is a minimax problem for a bilinear form called the Lagrangian. If the linear
program is

minimize cTf subject to Erf + s = 0, / > 0

then the minimizing player must choose a vector s and a nonnegative vector /,
while the maximizing player simultaneously chooses a vector v; then the payoff
to the maximizing player is the value of the Lagrangian

L{f,v) = c^f + v^{E^f + S)

If we now substitute the approximate representation v = Aw into this game, we
have restricted the actions of the maximizing player while leaving the minimizing
player untouched. In doing so we have given the minimizing player an advantage.

4.6.2 Approximating flows as well as values

To restore balance to the game, we must somehow restrict the minimizing player.
We will do so by adding a penalty term /(/) to the Lagrangian. The resulting
penalized Lagrangian is

Lp(f,v) = cTf + vT(Errf + s) + l(f)

Just as before, the minimizing player wants to choose / > 0 to make Lp(f,v)
as small as possible, while the maximizing player simultaneously chooses v to
make Lp(f, v) as large as possible. There are many different possible penalty
terms, each leading to a different algorithm. Depending on how we choose the
penalty, the resulting game may favor the minimizing player, the maximizing
player, or neither. We have already seen one example of a possible penalty, the
barrier term in the soft flow program. A disadvantage of using the barrier term
as our only penalty is that it is not clear how to choose the barrier parameter
ß to exactly cancel the advantage we have given to the minimizing player.

For the remainder of this chapter we will examine a different kind of penalty
term: we will restrict the minimizing player's choice of / to lie in a linear
subspace. If the subspace is given as the span of the columns of the matrix
B, then restricting / to lie in spanB is equivalent to using the penalty term
6(f\spmB).

The advantage of this type of penalty term is that there is a simple way
to maintain balance between the two players. If our MPP has n states and m

89

edges, and if the matrix A we are using to approximate the value function has
rank k, then we can choose B to have rank m-n + k. That way we have taken
n - k degrees of freedom away from each player. Different choices for B will
result in different algorithms.

Choosing the penalty <5(/| spanB) to compensate for the approximate rep-
resentation v = Aw results in the problem

mm max (cT/ + {Aw)T(ETf + s) + S(f\ spanB))

which we can also express as the linear program

minimize cTf subject to Ar(ETf + s) = 0, / > 0, / = Bg (4.12)

We will discuss algorithms for solving such a linear program in Section 4.7.

4.6.3 An analogy

It is instructive to consider an analogy to the problem of solving an overdeter-
mined system of linear equations. Suppose we have annxn square matrix M
and an n-vector b and we want to find an x so that Mx = b. Suppose also that
M is so large that we need to use the approximate representation x = Ay, where
A is an n x k matrix of basis vectors. The system MAy = b is overdetermined,
and so in general will have no solutions.

To find a reasonable value for y, we can write the system of equations as a
minimax problem:

max min pT (Mx — b)
X P

Since we have restricted the actions of the maximizing player by requiring x =
Ay, we need to define a penalty function l(p) that restricts the actions of the
minimizing player. One common choice for l(p) is the squared Euclidean length
of p. This choice of penalty results in the algorithm called least squares or linear
regression: since ||| • ||| is a self-dual function,

mm (f{MAy -b) + i||p||^ = -i||6 - MAy\\\

Another choice of penalty is the indicator function 6(p\ spanß) for some nxife
matrix B. A little algebra shows that the solution to the resulting minimax
problem satisfies the system of equations

BTMAy = BTb (4.13)

Equation 4.13 shows why the appropriate dimensions for B are n x k: if we
don't take the same number of degrees of freedom away from the minimizing
and maximizing players, Equation 4.13 will be either over- or under determined.

If we choose B = MA, then the equations in (4.13) are called the normal
equations. The solution to the normal equations is the same as the solution to

90

the least squares problem. The fact that we can represent linear regression in
these two different ways is a consequence of the fact that the derivative of |||p||§
is the identity function; this connection is similar to the idea of a link function
described in Sections 3.6 and 3.10.

Other possible choices for B include setting B = DA for some diagonal
matrix of nonnegative weights D, and setting each column of B to be a different
one of the n unit vectors in W1. The choice B = DA is not used very often,
since it is not usually any easier to implement than linear regression. Setting
B to a collection of unit vectors is the same as picking k of the n equations in
MAy = 6 to solve and throwing the others away. This algorithm is useful since
it requires much less computation than linear regression, although the quality
of the resulting solution may not be as good.

When our Markov decision process is a Markov process, the linear program
for finding the value function reduces to a set of linear equations. So, we can
use any of the above approximate linear equation solving algorithms to find an
approximation to the value function of a Markov process. Chapter 5, including
Sections 5.3.4, 5.3.5, and 5.4.1, contains a more detailed comparison of these
algorithms.

4.6.4 Open problems

The choice of S(f\ span!?) as a penalty term is not perfect. Its largest problem
is that the linear program (4.12) does not necessarily have a solution: it is
possible that restricting / to be in the span of B makes (4.12) infeasible, and it
is possible that restricting v to be in the span of A makes (4.12) unbounded.

If we know a vector /o > 0 which is either feasible or approximately feasible,
there is a simple trick to make sure that Equation 4.12 has a solution. If /o
is exactly feasible we can replace whatever B we were going to use by DB,
where D is the diagonal matrix with entries /o- Then, as long as the original B
could represent the vector of all ones, DB can represent /0. If we now ensure
that (4.12) is bounded, for example by requiring that the cost vector is positive
(c > 0), then there will be a finite optimal solution. If, on the other hand, /o is
only approximately feasible, we can replace the starting frequencies s by —ETfo-
If /o were exactly feasible then this replacement would not change the starting
frequencies, since feasibility implies —E^fo = s. Since /o is not feasible, the
replacement will change s so that /0 is feasible in the modified program. Then
we can set D to the diagonal matrix with entries /o and proceed as before.

Even if we do ensure feasibility this way, though, there is no guarantee that
any vector other than /o is feasible. In other words, it may not be possible to
evaluate any policy other than the one which generated our training data.

Another difficulty is that, while the most pleasing approximations to the
value function have approximately equal total Bellman error in the positive
and negative directions, the performance of the greedy policy is affected in an
inherently asymmetric way by Bellman errors of opposite sign. Positive residuals
correspond to states whose estimated cost is too low, and such states tend to
attract flow, while negative residuals correspond to states whose estimated cost

91

is too high, and such states tend to repel flow. So, in the worst case, a single
large positive error could cause the greedy policy to spend all of its time in one
state, while a single large negative error can only cause the greedy policy to
avoid one state (plus any states which are only reachable through that state).

Besides the restricting the minimizing player to a linear subspace, there are
many other ways to choose a penalty function. For example, we could restrict
the minimizing player to a convex set such as a cube or a simplex instead of to a
subspace. Or, we could remove some restrictions on the minimizing player while
adding others: for example, while we have restricted the minimizing player to
the intersection of the positive orthant with the span of B, we could equally
well have restricted to the projection of the positive orthant onto the span of
B. Finally, at the cost of giving up convexity, we could restrict the minimizing
player to a nonlinear subspace. We experimented briefly with these and other
approaches, but the version of the algorithm given here is the one that seemed
to work best.

Yet another approach is suggested by the correspondence between the soft
penalty term introduced in Section 4.4 and maximum likelihood estimation.
Negative Bellman residuals in an MDP program with a soft penalty term cor-
respond to samples in a maximum likelihood problem that have low probability
under the best model. Such samples are often called outliers, under the as-
sumption that they were generated by some process that we cannot model. In
maximum likelihood estimation, two possible responses to outliers are to dis-
card them or to add additional representational power to the model. We could
apply these same principles to solving MDPs by either discarding transitions
with large negative residuals or adding representational power to our model of
the value function.

4.7 Implementation

The previous section outlined at a high level the choices involved in designing
an algorithm to approximate the Bellman linear program for a Markov decision
process. This section describes in more detail the implementation we used to
perform our experiments.

4.7.1 Overview

There are several design decisions that we had to make for our algorithm. The
first is how to represent our knowledge about the Markov decision process,
including its dynamics, its goals, and its starting state frequencies. We chose
to represent the MDP's dynamics and goals with a list of the transitions we
have sampled; so, for each transition, we store its one-step cost and the feature
vectors for its starting and ending states. To represent the starting frequencies,
we store our estimate of the expected feature vector for a state chosen from the
starting distribution.

92

A I 0
A -I I
A 0 -I

The second decision is what representation to use for the flows. As discussed
in Section 4.6.2, we want to restrict the minimizing player to a subspace of the
possible flow vectors in order to counterbalance the fact that we have restricted
the maximizing player to a subspace of the possible value functions. We can
represent the allowable subspace of flow vectors as the span of a matrix B.

In our implementation we use the following choice for B. There is one row
for each transition we have observed. The first k columns of the row contain
the feature vector for the starting state of the transition. That means that the
first k columns of B are a copy of A with some rows duplicated. The remaining
m — n columns of each row contain either one or two nonzero elements, and
are used to chain together all of the actions that have the same starting state.
If rows i\ < i2 < ■ ■ ■ < ij all start from the same state, there will be a 1 in
position (k + ii,ii), a —1 in position (k + ii,ia), a 1 in position (k + «25*2), a
— 1 in position (k + «2,«3), and so on until a —1 in position (A; + ij-i,ij). This
pattern of Is and —Is for a single starting state takes up one fewer column than
it does rows, and so for n states it will take up n fewer columns than rows.

To understand this choice of B, consider the example of an MDP with exactly
three actions from each state. If we sort the transitions by action, then by state
within action, B will have the block representation

(4.14)

In this example, as in general, if we write f = Bg then the first k components
of g assign flow equally to all actions with the same starting state, while the
remaining m — n components of g move flow around between actions with the
same starting state. As we can see from the example in (4.14), the last m — n
columns of B are very sparse; so, since an m x (m - n) matrix is expensive to
represent we will store only the nonzero components of these columns of B.

The final decision is whether to apply the trick described in Section 4.6.4 to
make sure that the linear program is feasible. We decided not to do so, since we
wanted to include information about transitions that we did not follow, Under
the scheme of Section 4.6.4, such transitions would receive zero weight and so
would convey no information. We did not observe any problems with infeasibil-
ity, but it could still be that reweighting in this way would have improved our
learning performance.

The next section describes our implementation in more detail.

4.7.2 Details

The input to our program is a description of the transitions we have sampled
from the Markov decision process and the features we plan to use to approximate
the value function. More specifically, if we have seen m transitions from n states
and we have k features, the input will comprise the following objects (described
in more detail below);

93

• Annxfc dense matrix A.

• An m x k dense matrix EA..

• An (m-n + k) xm sparse matrix B.

• An m-vector c.

• A k-vector ATs.

By a dense matrix we mean one where we represent every element explicity,
while by a sparse matrix we mean one where we represent only the nonzero
elements to save space. The output of our program is a vector of parameters w
representing our learned value function.

The columns of the matrix A are the basis functions we intend to use to
represent the value function. In other words, at the end of the algorithm, Aw is
our best estimate of the true value function. To save space, we do not represent
the rows of A that correspond to states which we have not visited. Each row of
A contains the values of our k features or basis functions at a single state. For
example, if our observed states were the real numbers x\,x2,... and we wanted
a quadratic approximation to the value function, then the rows of A would be
(\,xux\),(\,x2,xl),....

The matrix EA is our best estimate of the product of the edge matrix E with
the basis matrix A. To save space, we remove from E the columns corresponding
to states we have not visited and the rows corresponding to transitions we
have not visited. So, each row of E corresponds to a single transition we have
observed: if we observe a transition from state i to state j then the corresponding
row of E will have a -1 in the ith column and a 7 in the jth. column. If we
know not just a single destination state but a probability distribution p with
nonzero mass on several destination states, then the corresponding row of E will
be equal to 7p except that 1 will be subtracted from the ith column. So, each
row of EA contains a difference between feature vectors along a transition: if
we observe a transition from state i to state j, and if state i has feature vector
Oj and state j has feature vector a,-, then the corresponding row of E will be
70j - at. If we know the probability distribution p over possible destination
states then we can replace 70,- by its expectation under p.

The matrix B plays the role described above: we restrict the minimizing or
flow player to choose a vector in the span of B. Since the first k columns of each
row of B are duplicated from A, we store the indices into A instead of these
columns; and since the remaining m - n columns of B are sparse, we store these
columns as a list of their nonzero entries.

The vector c contains the cost of each transition. The vector ATs is the
product of our basis matrix A with the vector of starting frequencies s. We
can compute -ATs as a weighted sum of the rows of EA, with the weight of
each row equal to the number of times we have traversed the corresponding
transition.

94

Once we have these inputs, the simplest way to find the coefficients of the
approximate value function is to construct the linear program

minimize cTf subject to ATETf + ATs = 0, / = Bg, f > 0 (4.15)

and pass it to a prepackaged linear program solver. The estimated coefficients
of the value function are then the dual variables for the equality constraints
ArETf + ATs = 0 (possibly negated, depending on how the prepackaged solver
defines the dual variables). This approach works well if the prepackaged solver
is set up so that it does not cause too much fill-in in matrix products involving
B.

To take better advantage of the sparseness in B we have implemented an
interior-point barrier method linear program solver customized for linear pro-
grams of the type (4.15). Like other logarithmic barrier methods (for example
[AGMX96, Van94] and many others), our implementation approximately solves
a sequence of convex programs

minimize cTf - ß]T In fc subject to ATETf + ATs = 0, / = Bg (4.16)
i

for decreasing values of the barrier parameter fi. The barrier parameter serves a
similar purpose here to the one it served in Section 4.4: it softens the constraints
and makes the convex program smoother. Whereas in Section 4.4 we wanted to
smooth the constraints because of uncertainty in the coefficients of the linear
program, here we just want to smooth out the constraints to make the program
easier to solve. So, we will start with a large value of n, then try to track the
solution to (4.16) as we decrease p towards zero.

The set of solutions to (4.16) for all values of fi is called the central path.
Figure 4.7 shows a fragment of the central path for the simple linear program

minimize x + y subject to x > 0, y > 0, x + 2y > 1

As the figure shows, the central path starts out far from any of the constraint
lines, then moves smoothly towards the optimal solution.

The Lagrangian for Equation 4.16 is

cT/ - /, £ In /< + w^A^(E^f + a) + zT(/ - Bg)
i

To find the saddle point of the Lagrangian we can set its derivatives with respect
to /, g, w, and z to zero. The resulting nonlinear equations are

0 = c - /u- + EAw + z

0 = BTz
0 = AT(ETf + s)

0 = f-Bg

95

Figure 4.7: The central path for a linear program.

where ± means the vector whose components are the inverses of the components
of /. The only nonlinearity above is in the first equation. To make the math
more symmetric, we will declare a new m-vector x and replace the first equation
with

x = c + EAw + z

ß = fiXi (Vi)

If we have initial guesses for the variables /, g, w, z, and x, we can use
Newton's method to find an update direction which brings them closer to solving
Equation 4.16. That is, we can linearize the equations around our current values
for the variables and solve the linearized equations for the update direction. We
will require that our initial guesses for / and x are strictly positive; the updates
we describe below will preserve this property.

We will linearize the equation /i = ftXi by replacing ft with ft + Aft and xt

with Xi + Axt, then treating ft and x{ as constants. The result is

P = ftxi + ftAxi + XiAft + hi

where ht is the remaining higher-order term that depends on both Axt and
Aft. By using the shorthand that F and X stand for the diagonal matrices
with elements / and x, and that e stands for the vector of all ones, we can write
the linearized equations as

lie - h - Fx = FAx + XAf

The remaining equations are already linear, but to keep the notation consis-
tent we will replace g, w, and z by g + Ag, w + Aw, and z + Az and treat g, w,

96

and z as constants. Now we can collect all of the equations into one big array:

(° EA I
ATErr 0 0

I 0 0
-I 0 0

\ o 0 -BT

-I 0 \ (A/ \
0 0 Aw
0 -B Az

K-iF 0 Ax
0 0 J \ Ag J

(4.17)

We have avoided writing the constant on the right hand side because it would
be a complicated expression and its exact form does not affect the following
discussion. The matrix in (4.17) is symmetric and quasidefinite, which means
that we can factor it by an algorithm similar to Cholesky decomposition; the
only difference is that some of the pivots during the decomposition will be
negative, so we will represent our factorization as LDLT (where L is a lower
triangular matrix and D is a diagonal matrix) instead of incorporating \/T) into
L.

Since the matrix in (4-17) is very sparse (many of its blocks are identically
zero, others are diagonal, and the matrix B is sparse) we need to take care when
factoring it not to introduce too much fill-in. So we will factor it partway by
hand before giving it to our LDLT factorizer. First we can use the fourth block
row of the matrix to eliminate the fourth block column, leaving the equations

/ F^X
' A^E'1

\

EA
0
0
0

I
0
0

0
0

-B
0

\

/

(M\
Aw
Az

V A5 J
This step causes no off-diagonal fill-in. Next we can eliminate the first block
row and column, leaving

ATETX~1FEA -ATETX-lF 0 \ / Aw \
~-X-xFEA -X^F ~B Az)=...

0 -BT o / Uw
This step causes some fill-in, but since EA is tall and narrow and X~lF is
diagonal the required computation is not large. Next we will eliminate the
second block row and column, leaving

0
BTEA

ATErrB
BTF~1XB

Aw
Aff
)-■

Since B is sparse, we have to worry about whether this step causes fill-in. The
matrix B^EA is smaller than EA, so we don't need to worry about fill-in in
this block. To analyze the block BTF~1XB, first suppose that B has the form
given in Equation 4.14. Then if we divide F~lX into a three by three block
matrix with diagonal blocks D-y, Di, and D3, BTF~lXB is equal to

(A - D2)A
(D2 - D3)A

A'T(D1-D2)

-D2

AT(D2 - D3)
-D2

D2 + D3

97

More generally, we can divide B into k dense columns and m-n sparse columns,
so BTF~1XB is of the form

small and dense (narrow and dense)T

narrow and dense large and sparse

The dot product between two different sparse columns is nonzero only if the
two columns correspond to adjacent transitions from the same state, so each
column of the large, sparse block has at most one nonzero element above the
diagonal and at most one below. That means that we still have not caused any
unacceptable fill-in.

Finally, for our last step before passing the matrix to the LDLT factorizer,
we can pivot along the diagonal of the large sparse block of BTF~1XB. The
result is a completely dense symmetric matrix with four k x k blocks. Since
k, the number of basis vectors, is small, we can factorize this matrix cheaply.
Using this factorization we can compute Aw and the first k components of Ag;
then we can substitute backwards, undoing each of the eliminations described
above, to compute the remaining components of the update direction.

Once we have the update direction vector, telling us how to change our
estimates of /, g, w, z, and x to move closer to a solution of Equation 4.16, we
need to decide how far to move our estimates in this direction. In other words,
we need to compute a step length A e [0,1] which tells us what fraction of the
computed update vector to add to our estimates. Usually a step length of A = 1
is too long, since it will cause some components of / or x to become zero or
negative. So, we compute the longest step A0 which keeps / and x positive;
then we use a step length which is the smaller of 1 and

.666A0 + (ß- -666)Ag (4.18)

The parameter ß 6 (0,1) controls how aggressively we try to approach the
boundary; we use ß = .99995. The motivation for (4.18) is that the true solution
has / and x nonnegative, so the farther past the constraints / > 0 and x > 0
the update vector tries to take us, the less we should believe it. Equation 4.18
produces a conservative steplength near .666 if the update vector would drive /
or x far past their constraints, while it produces an aggressive steplength of ß if
the update direction vector brings / or x exactly to the border of the positive
orthant.

The foregoing discussion describes how to update /, g, w, z, and x if we
know the value of the barrier parameter \x and the higher-order term h. To
estimate \i and h we use a second-order predictor-corrector method. We start
by computing the update and step length for ft = 0 and h = 0. (This update is
called the predictor step.) Then we estimate the higher order term by

hi = AfiAxi

where A/ and Ax are the predictor updates to / and x. Next we compute a
target p by a heuristic called Mehrotra's rule. Mehrotra's rule is based on the

98

observation that in the optimal solution to Equation 4.16 we have fTx = rrifi.

So, we can use ^—- as an estimate of the barrier parameter ß that produced our
current values for / and x. We always want to try to lower /x; to determine how
much to lower it we compute

fTx
/io = m

(f + \Af)T(x + \Ax)
\i\ =

m
where A is the step length from the predictor step and A/ and Ax are the
predictor updates to / and x. The values /xo and \i\ are the estimated barrier
parameters before and after the predictor step. Then we set the target barrier
to be

M=/xi(£)
This choice of target tries to lower \i somewhat more than the predictor step
alone would have. Finally we use these values for \i and h as our estimates of the
barrier parameter and higher order term to compute the actual update vector
and step length. (The change between the predictor step and the actual update
vector is called the corrector step.) In order to use a second-order strategy like
this one we have to solve the system of equations (4.17) twice with different
right-hand sides; this does not cause too much extra work since we can save the
factorization from the first time and reuse it the second.

In order to completely specify our algorithm, we need to pick initial estimates
for /, g, w, z, and x. We choose the very simple initialization fa = Xi = 1 and
g = 0, w = 0, z = 0.

4.8 Experiments

This section describes three experiments with the algorithm of Section 4.7. The
first experiment is very simple and is just intended as a sanity check; the other
two are with larger and more interesting MDPs.

4.8.1 Tiny MDP

The MDP for this experiment consists of 50 states in a line. The actions are to
go one state left or right. Moving off the end of the line ends the process. The
cost of each action is randomly selected before the beginning of the experiment
from a normal distribution with mean 1 and variance .3, and remains fixed and
deterministic thereafter.

Figure 4.8 shows the exact value function (large dots) and a quadratic ap-
proximation to it (solid line). The quadratic approximation was computed by
the algorithm of Section 4.7. For comparison, Figure 4.8 also shows (dashed line)
the least-squares fit to the exact value function. As we expect, the least squares
fit is nearer to the exact value function than the solution from the algorithm of
Section 4.7, but not by much,

99

Figure 4.8: Value functions for MDP with 50 states in a line.

4.8.2 Tetris

The game of Tetris, shown in Figure 4.9, is played on a board 10 squares wide
and h squares tall (we used h = 16). Each square of the board is either empty
or full. In the space above the board the player is given one new piece at a
time. Each piece consists of four filled squares arranged in one of the seven
possible tetrominos (L, backwards L, S, Z, T, I, and square). Depending on
which type of piece is showing, the player has up to 34 possible actions: each
action consists of placing the piece in a particular orientation and horizontal
position and dropping it. The edges of the piece are not allowed to extend
beyond the left or right boundaries of the board. Once dropped, the piece falls
straight downwards until its path is blocked by a filled square, at which point
it stops moving and a new piece appears above the board. If the piece cannot
move downward so that it is contained entirely within the board, the game is
over. If at any point an entire row of the board is filled (that is, if there are ten
horizontally adjacent filled squares) then that row disappears, the rows above it
move down, and a new empty row appears at the top of the board to keep the
height constant. The player scores one point for every row removed this way.

Tetris is a Markov decision process: the state consists of the arrangement
of empty and filled squares (210h possibilities) and the type of piece showing
(7 possibilities). The actions from each state are the possible positions and
orientations from which to drop the piece. The actions have stochastic outcomes:
while the motion of the piece and the scoring are deterministic, the type of the
next piece is chosen uniformly at random from the possible types. We chose a
discount factor of 7 = ,99.

The human version of Tetris has several differences. First, there are more
states but fewer actions: the piece is shown moving down the board one row
at a time, with enough time between downward motions to allow for several
actions. The actions are to move the piece left or right one square, to turn it
90° counterclockwise, or to do nothing. Second, the human version has h = 20
instead of h = 16. Finally, the scoring for the human version is more com-
plicated, containing bonuses for achievements such as placing pieces quickly or

100

^^^^^^^^^^^^^^^^^^^^^B

■■ ■■

■ ■■■ ■

35 1

Figure 4.9: The game of Tetris.

removing several rows of filled squares at once. We chose the nonhuman version
of Tetris for several reasons: except for differences in h it is the same version
used in previous research [TV94, BI96]; it takes less computation per trial so
our experiments can run faster; the lower height causes lower scores which also
lets our experiments run faster; and it appears to be easier for the computer to
learn.

We chose a very simple representation for Tetris's value function, a linear
combination of just five features. All features were set to zero for game over,
thus fixing the value of an ended game at zero. For a game in progress, the
features were:

Constant Always equal to 1.

Average height The average height of the highest filled block in each of the
ten columns.

Maximum height The maximum height of any filled block.

Airspace The total number of empty blocks that appear anywhere below a
filled block in the same column.

Bumpiness The sum of the nine absolute differences between the heights of
adjacent columns.

These features span a subspace of the features used in [BI96]. Although this
representation is simple, it contains value functions whose greedy policies are

101

good Tetris players: the best learned players below scored hundreds of rows in
an average game.

One possible source of confusion about this representation is that it does
not encode the type of the currently falling piece. This fact does not prevent
a greedy policy from taking the current piece into account when it chooses an
action: since the greedy policy is the result of a one-step lookahead, the current
piece type affects the choice of action by determining the set of possible next
states for the lookahead.

We compared the performance of two algorithms on this task. Both algo-
rithms used the representation described above for the value function. The
first algorithm was an approximate variant of policy iteration. We chose this
algorithm because we believe that most researchers would accept it as a rea-
sonable standard of comparison. In the approximate policy iteration algorithm,
we played groups of five games using the same policy. After each group we ran
the LS-TD(O) algorithm (described in Section 5.3.4) on that group's training
examples to learn an approximate value function for the corresponding policy.
After learning we switched to a new policy and threw away all previous training
examples. To determine what policy to follow, we kept a running average of all
of the value functions computed so far, and always acted greedily with respect
to that average value function.

The second algorithm was the one described in Section 4.7. To make the
comparison between the two algorithms as easy as possible, we kept as many
algorithmic details as possible the same. So, we played groups of five games
using the same policy, we threw away all training data every time we switched
to a new policy, and we always acted greedily according to the average of all
value functions computed so far. Instead of using LS-TD(O) to compute the
value function after each group of games, though, we solved a linear program as
described in Section 4.7. Because we kept so many algorithmic details the same
for the two algorithms, we could switch between them by changing only a few
lines of code.

To evaluate the performance of each algorithm we simply started it playing
Tetris and recorded its scores. Figure 4.10 shows a plot of each algorithm's score
as a function of how many groups of five games it had played. The plot is the
average of five runs for each algorithm, and each point in a run is the average
of the scores for the five games in a single group. This type of plot tends to
accentuate differences between algorithms, since better algorithms will achieve
longer games sooner and so will have access to more training data.

As Figure 4.10 shows, the linear programming algorithm manages to learn
a decent Tetris player, but it does not achieve the performance of approximate
policy iteration. Section 4.8.3 explores some possible reasons for this behavior.

We examined the weight vectors learned by the two algorithms, and they
were substantially different. To check whether the difference might have been
caused by slow convergence or local optima, we started the linear program-
ming algorithm from the weight vector learned by approximate policy iteration.
Within a few groups of games, the linear programming algorithm had moved
away from its starting vector and back towards the answer it had converged to

102

1000

•800

600

400

200

Figure 4.10: Performance of two algorithms for playing Tetris. Heavy line:
linear programming. Light line: policy iteration.

from the original starting point.

4.8.3 Hill-car

We hypothesized that the linear programming algorithm's difficulty in learning
Tetris was caused by trying to reason about transitions that led to states we had
never visited. Since the learner has no direct constraints on the values of these
states, and since their representations may be outside the convex hull of the
representations of the visited states, we thought that trying to infer the values
of these states might cause instability. Unfortunately, in a typical application,
there is no way to avoid reasoning about unvisited states: the learner simply
does not have time to explore every transition, so if we discard transitions that
we have not followed, we will be reduced to a single transition out of most states.

In a small MDP, though, it is possible to visit every state. So to verify our
hypothesis, we performed an experiment on a much simpler MDP. We expected
that, if the unvisited states were causing our problems, the learning performance
would start out poor (worse than could be explained just by lack of data), then
improve rapidly as our sample size increased, and finally become acceptable
once we had visited most or all of the states in the state space.

For this experiment we took the hill-car problem from Section 2.5.2, changed
the time increment to .Is, and reduced the state space to [—1,-7] x [—2,2]
(corresponding to positionxvelocity). Then we discretized the state space to
a 20 x 20 grid using bilinear interpolation. The result is a 400-state, 800-edge
discrete MDP. Each row of the edge matrix for this MDP has up to five nonzero
entries: one negative entry for the state at time t, and up to four positive entries
for the possible states at time t+1.

We collected data by following a fixed policy: always thrust right. Since the
goal is to get to any position greater than ,6, this policy is optimal from any
State where the car has sufficient momentum to reach the top of the hill, but
will never terminate if the car does not start out with enough momentum, To

103

Figure 4.11: The exact value function for the hill-car MDP and a spline approx-
imation to it.

avoid infinite trajectories, we terminated a trajectory with probability .01 on
each time step, corresponding to a discount factor of 7 = .99.

We represented the value function by storing the estimated values at 49
states on a 7 x 7 grid, then interpolating in each direction with a cubic spline.
In other words, we used 49 basis functions, each of which was the product of a
cubic spline depending only on position with a cubic spline depending only on
velocity.

In each run of our experiment we collected seven trajectories at a time,
then fed all of the trajectories so far to our learning algorithm. During each
trajectory we recorded all available actions from each state we visited. We never
changed policies, and we never threw away any data. After each invocation of
the learning algorithm, we recorded both whether it converged and what weight
vector it converged to. We collected twenty groups of trajectories, for a total of
140 trajectories per run.

We ran the experiment five times. Each time, after we had collected all 140
trajectories, the learning algorithm was able to find a good approximation to
the true value function. Figure 4.11 shows the true value function and a typical
approximation to it.

In three of the five runs, though, the linear programming algorithm did
not converge within 75 iterations of the interior-point method when given data
from only the first group of seven trajectories. In one of these three, it also did
not converge when given data from the first two groups. In fact, on all runs,
the linear program shows signs of ill-conditioning when data are scarce, either
by lack of convergence or by convergence to an answer with a large 2-norm.
Figure 4-12 shows a typical example of the latter. The value function shown
in the figure is based on data from three groups of trajectories; notice that
the estimated values are off of the plot scale at two corners of the state space,
(.6,-2) and (-1,2), where the data are particularly sparse. The full range of
this learned value function is [-52.23,15.22].

On the other hand, all runs converged consistently to value functions with
about the right two-norm after they had seen at least fifteen groups of seven tra-
jectories. We believe that this behavior supports our hypothesis that transitions
ending in unvisited states tend to cause instability.

104

Figure 4.12: A value function learned from sparse data.

4.9 Discussion

In this chapter we have examined the connections among Markov decision pro-
cesses, linear and convex programming, and maximum likelihood. Based on
our analysis we have recommended a method for designing value-function ap-
proximating algorithms: substitute an approximate representation for the value
function into the Bellman linear program, then add a penalty term to the dual
of the Bellman program. We have coded a fast implementation of one such
algorithm, and experimented with this implementation. While the learning
performance of this algorithm does not improve on the best prior algorithms,
we hope that the intuition and design methodology of this chapter can aid in
the design of other algorithms for solving MDPs.

105

106

Chapter 5

RELATED WORK

107

108

This chapter is a brief summary of related reading on Markov decision pro-
cesses. It starts by considering methods for solving small MDPs exactly, such
as value iteration, policy iteration, and linear programming. Next it discusses
exact methods for solving special cases of MDPs like linear-quadratic-Gaussian
processes and continuous-time problems that are linear in their controls. Then
it considers a variety of methods for approximating value functions. These
methods range from simple interpolation on a regular grid to neural networks
trained by gradient descent. Finally it describes incremental algorithms for
solving MDPs.

5.1 Discrete problems

One of the first algorithms for solving Markov decision process was the Bellman-
Ford single-destination shortest paths algorithm [Bel58, FF62], which learns
paths in a graph (i.e., a deterministic undiscounted MDP) by repeatedly up-
dating the estimated distance-to-goal for each node based on the distances for
its neighbors. The Bellman-Ford algorithm is a special case of value iteration,
which is defined in Chapter .1. For other early work on similar algorithms
see [Bel61, Bla65],

Besides value iteration, another good way to solve small MDPs is policy
iteration. Policy iteration maintains a current policy 7rW on each step i. It
solves the equation

v = T^i)V

on each step, setting j;(8+1) to be the solution, and then computes 7r(,+1) to be
the greedy policy for v^l+1\ Policy iteration often takes many fewer steps to
converge than value iteration, but each step requires more work. For a proof of
the convergence of policy iteration see [BT89].

Midway between value iteration and policy iteration lies modified policy
iteration. In MPI we store both a current value function i>W and a current
policy 7TW. On each step we compute the next value function v^l+1^ from «W
by the backup operator for the current policy, v^l+1^ = T^o«*. On some steps
we set 7r(*+1) to be the greedy policy for u(J+1), as value iteration does, but
on other steps we just keep 7r^+1^ = 7rW. The relative frequency of these two
types of step is a parameter of the algorithm: if we always choose the greedy
policy, MPI reduces to value iteration, while if we usually keep the policy from
the previous step, MPI behaves more like policy iteration.

Even more generally, we could store separately a value and an action for
each state, and on each step improve some of the values (by setting them to
the result of the value backup operator for the current policy) and some of the
actions (by setting them to the action for the greedy policy). By choosing an
order of updates we can produce the value iteration algorithm, the modified
policy iteration algorithm, and other algorithms in between. As long as we
update all actions and values often enough, the resulting algorithm converges
(see [BT89]).

109

Finally, we can solve small MDPs by converting them to linear programs as
described in Chapter 4, then solving the linear programs with simplex, barrier
methods, or other linear programming algorithms [Ber76, p248] [Ros83, p40].
An MDP which takes a long time to solve by value iteration can sometimes take
much less time to solve by linear programming, and vice versa. See [TZ93, TZ95,
TZ97] for some comparisons between linear programming and value iteration.

5.2 Continuous problems

In the previous section we described several ways to find the exact value function
for a sufficiently small, discrete MDP. None of the methods of the previous
section is appropriate for solving MDPs with continuous state spaces. To solve
such an MDP, we must turn either to special cases or to approximate methods.

Approximate methods for solving continuous MDPs are similar to approx-
imate methods for solving large, discrete MDPs, so we will put off discussing
them until Section 5.3. The rest of this section describes some special cases of
MDPs with continuous state spaces that we know how to solve exactly.

5.2.1 Linear-Quadratic-Gaussian MDPs

One well-studied special case of continuous Markov decision processes is the
linear-quadratic-Gaussian problem, where the transition function is linear in
the states and controls, the cost function is quadratic, and all noise is Gaussian
additive. The value function for an LQG problem is always quadratic, with
coefficients given by a set of linear equations called the Ricatti equations; so,
we can solve even high-dimensional LQG problems easily. (In fact, hidden state
makes LQG problems only slightly more difficult.)

Even if a problem does not appear linear at first glance, it is sometimes
possible to make it linear by a transformation of the state and control variables.
Problems which may be so transformed are called feedback linearizable (see
[SL91J for more detail). One important example of a feedback-linearizable model
is an idealized multi-link robot arm; for this model, feedback linearization is
often called the "method of computed torques." Of course, if the original model
contains errors (for example, friction or backlash in the robot arm), so will the
linearized model. In fact, the errors in the linearized model can be worse, since
the computed control input may need to be very large to cancel the original
model's nonlinearities. Another possible source of problems is that quadratic
costs and Gaussian errors may no longer be quadratic and Gaussian after the
transformation.

5.2.2 Continuous time

Many MDPs with continuous state spaces evolve in continuous time rather than
in discrete steps, For such an MDP it is natural to write the value function as the

110

solution to a differential equation. To do so, we must make some assumptions,
the most important of which is that the MDP is deterministic.

If the state x(t) of an MDP evolves according to

-dt=fM

where u(t) is the control input, and if the cost of a path x(t) under control u(t)
is J c(x(t),u(t))dt, then the value function satisfies the differential equation

mm
V

j-v(x)) • f(x, u) + c(x, u) = 0 (5.1)

Equation 5.1 is called the steady-state Hamilton-Jacobi-Bellman or HJB equa-
tion [Ber95]. To ensure that the HJB equation has a unique solution, we must
specify sufficiently many boundary conditions.

For some MDPs we may be able to solve the HJB equations analytically. It
is easiest to solve the HJB equations analytically for Markov processes: since
Markov processes allow only one choice of control u, the minimization over u is
unnecessary and so the HJB equations are linear.

The paper [MM98] describes how to use a subset of averagers called barycen-
tric interpolators to solve continuous-time Markov decision processes. The es-
sential feature is that the authors add a requirement to the averager which
ensures that, as the representational power of the averager grows, the fixed
point of fitted value iteration converges to the true value function.

The following section describes a different approach to finding the best con-
trol for a continuous-time MDP.

5.2.3 Linearity in controls

Consider the single-input, single-output, nth order system

d\n

[dtj x = a(x) + b(x)u

where x is a vector whose components are x and its time derivatives up to order
n - 1, a and b are (possibly nonlinear) functions of x, and b(x) is bounded away
from zero. (For a generalization of the contents of this section to systems with
k inputs and k independent outputs, see for example [SL91].)

Our goal in this section will be to supply an input u(t) so that the output
x(t) tracks a given reference signal Xd(t) as closely as possible. This goal is
less general than controlling an arbitrary MDP in four important ways: first,
we have replaced a general cost function by the simpler objective of tracking
a known reference signal. Second, we have assumed that the system to be
controlled is deterministic. Third, we have assumed that the system is linear
in the control. Fourth, we have assumed that the number of control inputs
is equal to the number of independent outputs. The last two assumptions in
particular are often unrealistic, since they allow us to cancel an arbitrary drift by

111

choosing a sufficiently large control input. For example, the third assumption
is violated by a robot whose actuators can only exert a bounded amount of
force (but see [YSS97] for a treatment of linear systems with bounded controls);
the fourth is violated by the well-known cart-pole problem, which is to control
the angle of a pole and the position of its base (two independent outputs) by
exerting a horizontal force at the base (one input).

One benefit of making these simplifying assumptions is that we will be able
to derive a controller which succeeds even if we replace a and b by estimates ä
and b with bounded error. (Such a controller is called robust.) These estimates
might come, for example, from a supervised learner trained on observed system
trajectories.

Before we consider robust control, we will derive a controller for use when
we know a and 6 exactly. To that end, write e = x - xd for our tracking error,
and let

S=(l + W) e
where u is a positive constant. The combined error measure s is a linear combi-
nation of our tracking error and its derivatives; its importance is that, if we man-
age to achieve s = 0, the tracking error e must converge exponentially to zero.
To see why, consider the solutions of the differential equation (^ +u))n~1e = 0.
The polynomial (x + u)71'1 has all of its roots at -u. So, the norm of any
solution (e, 4f,..., ^f) must behave like exp(-wt). Since UJ > 0, this means
that the solutions all decay to zero with time constant A-.

If we define r so that s = £^f + r, we can solve for u in terms of ff and
known quantities:

ds
dl

(d\n. ^ dr
[dt) {x~Xd) + H

= a(x) + b(x)u - (— j xd + r

dt

1 f(d\n dr ds .A
u = W)\\dt) Xd-M + Tt-a^)

If we start out with the combined error measure s at zero, we can find the u
which maintains s = 0 by setting ^f = 0 in the above equation. More generally,
if s ^ 0, we can use a simple PD controller to reduce s by setting $L = -f~s for

some positive constant k. The resulting u will cause s to decay exponentially
to zero.

For example, suppose we Want to control the system x = cos(exp x) to track
sint starting from x = x = 0. If we choose u> = 1, the combined error measure
is s: = e + e = (x - cost) + (x - sint), and the recommended control input is
- sin« - (x - cos*) - ks - cos(exp:r). If we choose k = 1, we get

u = 2 cos * - 2x - x - cos(exp x)

112

0.5

-0.5

Figure 5.1: Tracking performance. The two curves are x{t) and Xd(i) = sint.

Figure 5.1 shows the resulting tracking performance. Increasing either fcorw
would cause faster tracking convergence at the cost of increased control activity.

The recommended control u depends on Xd and its derivatives as well as x
and its derivatives. We assume that x and its derivatives can be either directly
observed or computed. If the derivatives of Xd are not available (as might be
the case for example if the desired trajectory were specified by a user with a
joystick), a possible fix is model-reference control. In model-reference control,
the object is to track not Xd but a filtered version of Xd- The filter is called a
reference model, and its purpose is twofold: first to ensure that sufficiently many
derivatives of the filtered Xd are available, and second to ensure that the filtered
Xd is smooth enough that it can be tracked without unduly large control inputs.
One common choice of reference model is a low-pass filter. More generally, the
reference model might take some input other than Xd (for example derivatives
of Xd) to produce the filtered Xd-

Now suppose that, instead of the exact model a and b, we have a and b
instead, with —a < a — ä <a and 4 < | < ß. (The uncertainty bounds a > 0
and ß > 1 might in general depend on x and t.) Notice that this model of
uncertainty assumes that the sign of b is known, which might not be a plausible
assumption in some domains.

With an uncertain model, the PD controller jfi = — ks may no longer work.
So, we will use instead the bang-bang control law ^f = —fcsgn(s). The resulting
choice of u is called a sliding mode control. If we choose k large enough, we can
guarantee that the sliding mode controller will cause s to converge to zero even
without knowing the exact a and b. (With a small amount of algebra, we can
show that k = ß(a + T)) + (ß — l)\uo\ is large enough, where n is a small positive
number and UQ is the control that would result from setting ^f to zero.) Better
approximations for a and b will allow us to reduce k and use a smaller bang-bang
term.

Because of the bang-bang term — fcsgn(s), the sliding mode control is dis-
continuous in x across the surface s = 0. In fact, once the state hits s = 0, the
recommended control u(t) will generally have infinitely many discontinuities in

113

any finite-length time interval. Such a control is usually physically impossible
to implement; so, in practice, one would generally interpolate u(x) across a thin
boundary layer — e < s < e.

5.3 Approximation

All of the above methods are designed to find exact solutions to Markov deci-
sion processes. Because of this fact, they are usually limited to solving small or
special-case MDPs. On the other hand, it is perfectly possible to run similar
algorithms on an approximate representation of the solution to a decision prob-
lem. For example, Bellman discusses finding approximate value functions by
quantization and low-order polynomial interpolation in [Bel61], and decompo-
sition by orthogonal functions in [BD59, BKK63]. These approximate methods
are not covered by the convergence proofs for the exact methods. But, if they
do converge, they can allow us to find numerical solutions to problems which
would otherwise be too large to solve.

Researchers have experimented with a number of approximate algorithms for
finding value functions. Results have been mixed: there have been notable suc-
cesses, including Samuels' checkers player [Sam59] and Tesauro's backgammon
player [Tes90]. But these algorithms are notoriously unstable; Boyan and Moore
list several embarrassingly simple situations where popular algorithms fail miser-
ably [BM95]. Some possible reasons for these failures are given in [TS93, Sab93].

The remainder of this section discusses approximate algorithms for solving
MDPs. Many of these algorithms are modifications of the exact algorithms
described in Section 5.1.

5.3.1 State aggregation

The most straightforward way to approximate a continuous MDP, and one of
the best-known, is to discretize the state space into a grid and assign the same
value to every state in a given cell. Similarly, to approximate a large discrete
MDP, we can divide the states into bins and assign the same value to every state
in a given bin. For either a continuous or a discrete MDP we can then pick one
sample state from each bin and run value iteration as if our samples were the
entire state space. This algorithm is a special case of fitted value iteration, and
so has convergence and error guarantees (see Chapter 2). State aggregation has
been in use at least since the 1950s [Bel61, p86]. It is still in use today, often
in combination with adaptive methods for determining how finely to discretize
the state space [CT89, Moo94].

If we choose to divide each axis of a d-dimensional continuous state space into
k partitions, we will wind up with kd states in our discretization. Unfortunately,
even if we choose a smallish value for k we can wind up with a huge number of
states: for example, if we choose k = 100, a six-dimensional continuous MDP
will translate into a 1012-state discrete MDP, This problem is called the curse

114

of dimensionality, since the number of states in the discretization is exponential
in d.

5.3.2 Interpolated value iteration

Another important special case of fitted value iteration, dating back at least to
Bellman's work in the 1950s [Bel61, p86], is the class of interpolating methods.
These methods store the value function only at a predetermined set of states;
when the value of some other point is needed for a backup, it is estimated by
some kind of interpolation scheme. The most common schemes are to store the
values of states at the vertices of a regular grid and approximate the values of
other states with either constant interpolation (in which the value over an entire
grid cell is the same) or multilinear interpolation. Higher-order polynomial
interpolation is also possible, but can result in divergence.

For a long time, grid-based methods with constant interpolation were the
only approximate variant of value iteration that was known to converge. The
papers [Gor95a, TV94] were, as far as we know, the first to extend the proofs
to cover even multilinear interpolation, an important extension since better
interpolation methods allow us to use coarser grids and so solve larger problems.
(Davies gives a two-dimensional example where piecewise constant interpolation
needs about 3012 = 90601 cells to achieve the same level of performance as
bilinear interpolation with ll2 = 121 cells [Dav96].)

5.3.3 Linear programming

The most straightforward way to introduce approximation into the linear pro-
gram representation of the Bellman equations is simply to substitute in an ap-
proximate representation for the value function. This approach can work well,
particularly if we can represent a low-error approximation of the value function.
For examples of MDPs that we can solve this way see [TZ93, TZ95, TZ97].

This approach has one important disadvantage. Because we cannot repre-
sent the true value function exactly, we will not be able to satisfy the Bellman
equations exactly. So, we will have to settle for some errors, that is, states whose
assigned values are not equal to the backed up values from their neighbors. But,
because linear programs do not allow their constraints to be violated, all of the
errors in the linear-programming version of the Bellman equations will have the
same sign. To put it another way, the best approximation to v* will trade infea-
sibility against suboptimality, while the definition of linear programming treats
feasibility and optimality asymmetrically.

Chapter 4 discusses in more detail the problem of finding an approximate
value function by linear programming.

5.3.4 Least squares

For a Markov process, the Bellman equations reduce to

Ev + c - 0

115

where E and c are the edge adjacency matrix and cost vector for our process.
E is equal to P -1 where P is the transition probability matrix for our process.
See Chapter 1 for more detail.

We can replace v in the Bellman equations by an approximate representation,
say v = Aw. Here A is a matrix whose columns are basis vectors for representing
v, and w is a vector of adjustable parameters. If there are n states in our Markov
process and we use k basis vectors to represent v, then A will be n x k. With
this substitution, the Bellman equations become EAw + c = 0. This is a system
of n equations in k variables. Since in general k < n (that is, since in general
we use fewer basis vectors to represent v than there are states in our Markov
process), these equations are overdetermined; so, they usually do not have a
solution.

There are several ways to find a reasonable coefficient vector w in this sit-
uation. The simplest is to pick k of the n equations and throw away the rest.
The next simplest is to choose w as the least-squares solution, that is,

(EAfEAw + (EA)Tc = 0

The vector EAw + c is called the Bellman error or residual, so the least-squares
solution is the one that minimizes sum of squared Bellman errors. Finally and
most generally we might pick an arbitrary n x k matrix B and set

BTEAw + BTc = 0 (5.2)

If we pick B = EA, this method reduces to least squares; or, we can define
a B that keeps k of the n equations and throws away the rest by making the
columns of B be k of the n unit vectors in Rn.

One other choice for B that seems to work well is B = DA for some diagonal
matrix of nonnegative weights D. In particular we can set the diagonal elements
of D to be the state visitation frequencies / given by

ETf + s = 0

where s is the vector of frequencies of starting in each state. The resulting
equations are

ATI)iag(f)[EA + c}^0 (5.3)

This choice of B was popularized by the TD(0) algorithm described below in
Section 5.4.1; as is explained in more detail there, TD(0) uses this choice for
B because it is possible to compute an unbiased estimate of the coefficients of
Equation 5.3 by sampling trajectories from the Markov process.

TD(0) never represents Equation 5.3 explicitly, but instead solves it by
stochastic gradient descent. The algorithm which represents and solves Equa-
tion 5.3 explicitly is called LS-TD, for Least-Squares TD, even though it is not
actually a least squares algorithm. It is described in [BB96].

Methods based on solving Equation 5.2 have an important advantage over
fitted value iteration. As mentioned in Chapter 2, fitted value iteration applies a
function approximator over and over again to the same value function, possibly

116

resulting in loss of accuracy. Rather than approximating the value function
directly, Equation 5.2 approximates the update direction instead. That is, while
fitted value iteration computes a target value function Tv and approximates
that, Equation 5.2 computes the direction from the current value function to
the target value function, (T — I)v, and approximates that instead.

To see why this difference is important, consider the case where we are lucky
enough that our function approximator can represent the optimal value function
v* perfectly. (The results will be similar if we can only represent something close
to v*.) We pointed out in Chapter 2 that fitted value iteration can still drift
away from v* if we are using the wrong kind of function approximator. On the
other hand, the update direction from v* is by definition the zero vector, and
any linear function approximator can fit the zero function exactly. So, v* will
be a solution to Equation 5.2.

Unfortunately, it is difficult to generalize Equation 5.2 to find approximate
solutions to Markov decision processes: since the Bellman equations for MDPs
are nonlinear, it is not even clear how to decide what rank B to use to ensure
that there exists a solution.

5.3.5 Collocation and Galkerin methods

Sometimes we can solve the Hamilton-Jacobi-Bellman equations approximately
by numerical methods. This section describes two related techniques for doing
so. These techniques work best when the HJB equations are linear, that is,
for Markov processes instead of MDPs. In fact, they are in some sense the
continuous time analogs of the methods in Section 5.3.4.

Suppose we wish to solve a system of differential equations numerically—say
for example

dtf(t) + f(t) = 0
/(0) = 1

We begin by assuming a simple form for /(£), say f(t) = a+bt+ct2, and imposing
the boundary constraint /(0) = 1 to find a = 1. Now we can analytically
evaluate the derivative to get

(b + 2ct) + (l + bt + ct2) = 0 (5.4)

For any given value of i, this is an ordinary algebraic equation. In fact, since the
both the original differential equation and our approximation to / are linear,
the algebraic equation is linear in b and c for each t. In general it will be
impossible to satisfy the equation for all t, since we have replaced an arbitrary
smooth function / by an approximation with only a finite number of degrees of
freedom. So, we will need to pick a reduced set of equations to satisfy.

There are several ways to pick a reduced set of equations. The simplest is
collocation [GO77], in which we choose just enough values of t from the interval
of interest to guarantee a unique solution. In our example we have two free
parameters; so, since each collocation point gives us one new equation, we need

117

True
Collocat
Galerkin

0.2 0.4 0.6 0.

Figure 5.2: The solution to /' + / = 0 along with two approximations.

to collocate at two points. If we choose t = 0,1, we can solve for the coefficients
b - -1>C = h fiSure 5-2 compares the resulting approximation to the true
solution e~* near the collocation points.

The choice of collocation points can influence the quality of our result. We
can reduce the dependence of the answer on our exact choice of points, and
so sometimes get a more accurate approximation, by choosing more collocation
points than are strictly necessary and solving the resulting overdetermined set
of equations by least squares.

Rather than a set of test points, the so-called Galerkin methods [G077] use
a set of test functions instead. Each test function specifies a weighted average
of the equations for different values of t. For example, if we choose the test
functions t and t2 over the interval [0,1], Equation 5.4 yields the constraints

/ t(l + b + (b + 2c)t + ct2)dt = 0
Jo

f t2(l + b+(b + 2c)t + ct2)dt = 0
Jo

which we can solve to find b = -§§, c = f (see figure 5.2).
Galerkin methods are more general than collocation, since we can choose

Dirac «5-functions as our test functions in a Galerkin method and reduce it
to collocation. Just as in collocation, the choice of test functions influences
the quality of the resulting approximation; in our example, we have followed
common practice and chosen the basis functions themselves as test functions
(recall that we fixed the coefficient of 1 to satisfy the boundary condition, thus
removing it from the basis).

We can use collocation or Galerkin methods to find the value function of a
continuous-time deterministic Markov chain. If we assume that the goal state
is at the origin, and if the state vector evolves according to

dx t(\

118

then the value function satisfies the HJB equations

d
dxv{x)\ -f(x)+c(x) = 0

v(0) = 0

Now suppose that we choose a set of basis functions ßi(x), each with /?t(0) = 0,
and perform a Galerkin approximation using the basis functions as test func-
tions. A typical constraint will look like

Jßj(x) £> (^A(s)) -f(x)+c(x) dx = 0 (5.5)

where S is the state space and Wi is the weight for $. While this expression looks
formidable, it is actually completely analogous to the unweighted TD equations

AT[(P-I)Aw + c] = 0 (5.6)

(Equation 5.6 is the same as Equation 5.2 with the choice B = A.) Replacing
v by Aw is analogous to replacing v(x) by J2iwißi(x)i W1^ tne **h column
of A playing the same role as.,/?». The term J2iwi('£;ßi(x)) ' f(x) *s *ne rate

at which the value of the current state changes with time, given that we are in
state x; it is analogous to a single component of the vector (P — I) Aw in the TD
equations. So, the term in square brackets in Equation 5.5 is analogous to the
term in square brackets in Equation 5.6. Finally, the integral is the continuous
equivalent of a dot product, so using the ßi as test functions in Equation 5.5 is
analogous to the multiplication by AT in Equation 5.6. The end result in either
case is the same: we are computing for each state the rate of change of the value
function with time, and constraining the resulting vector to be perpendicular
to each of our basis functions.

Unfortunately, just as in the Section 5.3.4, it is not clear how to generalize
collocation and Galerkin methods from Markov chains to Markov decision pro-
cesses. Since the HJB equation is in general nonlinear, collocation or Galerkin
methods will yield a set of nonlinear algebraic equations. It can be arbitrarily
difficult to solve these equations; in fact it is not even clear how many collo-
cation points or test functions are necessary to ensure that they have a unique
solution.

5.3.6 Squared Bellman error

In Section 5.3.4 we discussed substituting an approximate representation for the
value function into the Bellman equations. In that section, we used a represen-
tation which was linear in its parameters and we restricted attention to Markov
processes; the result was that we derived a system of linear equations for the
coefficients in our approximation.

In this section we will examine the more general case where we allow non-
linear function approximators such as neural networks, and where we replace

119

Markov processes by Markov decision processes. In this case, of course, we
will not be able to find a closed-form solution for the parameters of our ap-
proximation to the value function. Instead, we will need to rely on numerical
methods.

In particular, we will focus on numerical methods for finding a local min-
imum of the sum of squared Bellman error. The Bellman error vector for an
approximate value function v is defined to be Tv - v, where T is the parallel
value backup operator for our Markov decision process. So, the sum of squared
Bellman errors is a nonnegative real-valued function of the parameters of our
approximation to the value function.

Unfortunately, squared Bellman error is a badly-behaved function: it is
poorly conditioned and it has derivative discontinuities. Ill-conditioning hap-
pens because the values of two states can be strongly linked even if they are
separated by many time steps. (Two states will be linked when the current
policy causes the agent to move from one to the other with high probability.) If
we update the values of such a pair of states in opposite directions, the Bellman
error will change much more quickly than if we update them in the same direc-
tion. This lack of condition means that the contours of equal Bellman error are
long and narrow, so that simple minimization algorithms like gradient descent
will be forced to take short steps and converge slowly.

On the other hand, methods which are more robust to ill-conditioning, such
as conjugate gradient and Newton's method, often depend on the smoothness
of the function to be minimized. Unfortunately, the Bellman error function can
have discontinuous derivatives even for linearly-parameterized families of value
functions: there will usually be a derivative discontinuity at every value func-
tion for which there is more than one greedy policy. So, for example, conjugate
gradient can get caught against a derivative discontinuity in such a way that
none of its line searches ever makes progress, while Newton's method can os-
cillate forever by stepping back and forth across a discontinuity. (Interestingly,
Newton's method for minimizing \\Tv -v\\% with respect to v is identical to pol-
icy iteration, so it is guaranteed to converge; Newton's method can only have
problems when we substitute an approximation for v.)

Figure 5.3 shows several views of the Bellman error surface for a very simple
MDP. On the bottom row of the figure is the MDP. It has two states, so its value
function is an element of R2: the two coordiantes are x and y, the estimated
values for the left-hand and right-hand states respectively. The top row of
the figure shows a 3D and a contour plot of the MDP's error surface: the x
and y axes represent our current estimate of the value function, while the z
axis shows the sum of squared Bellman errors for each estimate. These plots
clearly show the derivative discontinuity that happens when the two actions
from the right-hand state have the same backed-up value. They also show that
the contours of the error surface near the global minimum can be elliptical.
In this plot the ellipses are close to circular and therefore well-conditioned,
but changing the transition probabilities can give the contours arbitrarily bad
aspect ratios. Finally, the middle row of the plot shows the error surfaces for two
different one-dimensional slices of the set of possible value functions. These one-

120

10 15 20 25 30

10 15 20 25 30 46 47 48 49 50

Figure 5.3: Several views of a Bellman error surface.

121

dimensional slices correspond to different one-parameter families of approximate
representations for the value function. As the plots show, it is easily possible to
have multiple local minima or derivative discontinuities at the minimum.

It may be possible to minimize Bellman error efficiently by using hybrid al-
gorithms, for example damped Newton methods, Levenberg-Marquardt, or gra-
dient descent with momentum. Baird has proposed a promising hybrid method
which interpolates between temporal differencing (described below) and gradi-
ent descent [Bai95].

Even if we can find the parameters which minimize squared Bellman error,
though, there is another important difficulty: not all Bellman errors are equally
important. In some MDPs, many optimal paths pass through one or a small
number of bottleneck states. Errors at the bottlenecks are more important
than errors elsewhere: at the bottlenecks, a single error can affect many paths.
If we simply minimize Bellman error, we may end up accepting an important
error at a bottleneck instead of a larger but less important error at some other
state. Worse, we can't sidestep the problem simply by weighting errors at
the bottleneck states more heavily, since different policies can have different
bottlenecks and we won't know which states are the real bottlenecks until we
have already found the optimal policy.

There are heuristic algorithms which attempt to reweight states during the
optimization procedure, but so far no such algorithm has been proven to con-
verge for general function approximators. These algorithms can perform quite
well in practice.

5.3.7 Multi-step methods

The Bellman constraint that corresponds to a transition from state x to state
y with cost c is

v{x) < jv(y) + c

This constraint relates the value of state x to the value of its immediate successor
y. Similarly, the constraint that corresponds to a transition from y to z with
cost d is v(y) < jv(z) + d. Combining these two constraints gives

v(x) < j2v(z) +-yd + c (5.7)

Equation 5.7 relates the value of state x to the value of its two-step successor z.
We can combine three successive one-step constraints to make a three-step

constraint, four to make a four-step constraint, and so forth. In an absorbing
MDP, we can go so far as to combine all the transitions in an entire trajectory
to make a single constraint of the form v{x) < constant. Such an inequality
is called a TD(1) constraint, by analogy to the TD(A) algorithm described in
Section 5.4.1. The advantage of a TD(1) constraint is that it is not recursive: it
constrains the value of only one state rather than two. That means that we can
use supervised learning algorithms to find approximate solutions to problems
that contain only TP(1) constraints.

122

There may be many more multi-step constraints than there are one-step ones:
if our MDP has a constant number of actions from each state, then (ignoring
possible duplicates) the number of fc-step constraints on v{x) is exponential in
k. (A degenerate case of this rule applies to Markov processes. For a Markov
process the base of the exponential is 1, meaning that there is exactly one &-step
constraint on v(x) for each positive k.) To avoid dealing with an exponential
number of constraints, many practical methods restrict their attention to multi-
step constraints for transition sequences that actually occur in the observed
data. For example, such methods would ignore the constraint (5.7) unless the
learner had at some point moved from state x to state y to state z.

Multi-step constraints are redundant if we plan to solve the Bellman equa-
tions exactly. But, approximate methods for solving the Bellman equations
may treat a multi-step constraint differently from its component one-step con-
straints. For example, for a Markov process we can define a fc-step version of
Equation 5.3 that looks like

AT Dia,g(f)EkAw = ...

It is reasonable to ask whether approximate methods are likely to be more
accurate if they use one-step or multi-step constraints. As a rough rule, one-
step constraints are more data-efficient, while multi-step constraints are better
at minimizing the effects of the function approximator. There is experimental
evidence [Sut88] which suggests that a combination of constraints at different
time scales works better than either single-step constraints or TD(1) constraints
alone.

5.3.8 Stopping problems

Stopping problems are the subset of MDPs in which the agent has exactly two
actions at each state: one action is called "continue" and has an arbitrary effect,
and the other is called "stop" and leads immediately to the ending state ©.
The paper [TV97] points out that, unlike for general MDPs, there are still well-
defined state visitation frequencies in a stopping problem: these are just the
frequencies with which we would visit the nonterminal states if we never chose
the stop action. So, it makes sense to solve the nonlinear equations

ATD min(P4w + c,d) = ATDAw

where P is the transition probability matrix for continuing, c is the cost vector
for continuing, d is the cost vector for stopping, D is the diagonal matrix whose
entries are the state visitation frequencies, A is a matrix whose columns are
basis vectors for representing the value function, and the minimum operation is
taken componentwise. This expression is the analog of Equation 5.3. While the
minimum operation makes the equations nonlinear, [TV97] gives a convergent
algorithm for finding the solution.

123

5.3.9 Approximate policy iteration

It is possible to combine policy iteration with approximate methods for finding
value functions. There are no such combinations that have been proven to
converge for general MDPs and function approximators, but some combinations
seem to work in practice. For example, the experiments in Chapter 4 use one
such algorithm, and another is described in [BI96].

5.3.10 Policies without values

It is possible to learn a policy directly, without representing value functions along
the way. For example, we can pick a starting policy, evaluate it by following
some trajectories and measuring the incurred cost, and try to modify it to make
it better. Methods for doing so include gradient descent, simulated annealing,
and genetic algorithms.

Unlike simulated annealing and genetic algorithms, gradient descent requires
the ability to compute an unbiased estimate of the gradient of a parameterized
policy's expected cost with respect to one of its parameters. It is not obvi-
ous that it is possible to compute this gradient without reference to the value
function, but [Wil92] gives an algorithm called REINFORCE which does so.

The advantage of methods of this kind is that they try directly to optimize
actual costs, instead of some proxy for actual costs like the consistency of a
value function. The disadvantage of these methods is that they can be slow
to converge: without the intermediate representation of a value function, it is
harder to decide which parts of a policy are responsible for high costs.

Baird and Moore [BM99] have recently derived an algorithm called YAPS
(for value and policy search) that can combine gradient descent on expected
total cost with gradient descent on squared Bellman error or on other related
performance measures. Such an algorithm can use a value function to decide
which parts of a policy need modifying, but can also take actual costs into
account directly.

5.3.11 Linear-quadratic-Gaussian approximations

It is common practice to approximate a nonlinear control problem by an LQG
problem in some neighborhood. Unfortunately, a single linear-quadratic model
is often not sufficient, and it is much harder to build a piecewise-LQG approx-
imation to a control problem. The difficulty is in ensuring consistency along
the edges of the pieces: the value function in each piece no longer satisfies the
Ricatti equations, since it depends also on the values in every other piece.

One approach to this problem is to ignore it. That is, we can compute several
separate LQG approximations around different points, ignoring possible inter-
actions. Then we can control the system using the LQG approximation which
is most appropriate for the current operating conditions, or by interpolating
among several nearby models. This approach is called gain scheduling. It is
particularly effective when the reward function is globally quadratic, as it is for

124

example when we are trying to track a reference signal as closely as possible. In
this case the LQG models can't get confused about where the lowest costs are,
but only about how to get there. In addition, if the controller does get stuck far
from the small costs, it is often possible to unstick it by hallucinating a series
of target points (represented as a series of fictitious quadratic cost functions)
which are close enough together that the linear-quadratic approximations can
follow them and which lead the controller to a desirable region of state space.
Of course, the question of which target points to use can be as difficult as the
original control problem.

For control problems too difficult for gain scheduling, Atkeson has developed
a method for growing "spines" backward along optimal trajectories [Atk94]. A
spine comprises a series of local LQG models; each model is locally approxi-
mately consistent with the previous and subsequent models on the same spine,
but models on different spines do not interact, so there are not too many de-
pendencies between models.

Control methods based on linearization suffer from some problems. The
first is that they may require a large number of linear pieces, forcing us either
to store many precomputed controllers or to search for and generate controllers
as needed in real time. The second and more important is that the system may
not be even locally approximable by an LQG model: transition functions aren't
always smooth, errors aren't always small and Gaussian, and arbitrarily large
control inputs aren't always practical.

5.4 Incremental algorithms

Two of the best-known algorithms for finding value functions are TD(A) and
<5-learning [Sut88, Wat89]. Both of these algorithms are incremental, meaning
that they examine each training example once and then forget it. This property
may be useful if storage space is at a premium or if it is as easy to generate a
new training example as it is to remember an old one. (J-learning solves Markov
decision processes but does not handle function approximation, while TD(A) can
handle function approximation but only solves Markov processes.

5.4.1 TD(A)

TD(A) is an algorithm that finds approximate value functions for Markov pro-
cesses. (TD is short for temporal differences, because the update for TP(A)
depends on the difference between parameters of successive states.) It can use
any representation for value functions that is linear in its coefficients; that is, it
can represent v = Aw for any matrix A whose columns we want to use as basis
vectors.

If we are given a Markov process, it is possible to discover the bottleneck
states by observing actual or simulated trajectories from the process. (This is
not true for an MDP, since the bottleneck states depend on the optimal policy.)
By observing trajectories, we can build unbiased estimates of how often we

125

visit each state. Once we know the state visitation frequencies, we can solve
Equation 5.3 to find an approximate value function.

The TD(0) algorithm is an incremental algorithm which implicitly discov-
ers the state visitation frequencies and solves Equation 5.3. After observing a
transition from state i to state j at cost c, TD(0) updates its parameter vector
w by the rule

w <-w + r/aidjaj - a*) • w + c)

where 77 is a learning rate and a, and a,- are the ith and jth rows of A expressed
as column vectors. It is possible to show [Sut88, Day92, TV96] that under
appropriate conditions TD(0) converges to the solution of Equation 5.3.

TD(A) is a slightly more complicated algorithm with an update that depends
on a whole sequence of states instead of just the last two. As the papers cited
above show, it converges to the solution of an equation similar to Equation 5.3.

There is no straightforward way to generalize TD(A) to solve Markov decision
processes. Still, there are several popular heuristic MDP algorithms based on
the method of temporal differences. These include TD-based variants of value
iteration, Q-learning, policy iteration, and modified policy iteration. Perhaps
the most successful is TD value iteration, which has surfaced for example in a
world-class backgammon player [Tes94] and an elevator controller [CB96].

TD-based methods have the advantage that, at least heuristically, one would
expect them to be good at finding bottleneck states because they always reweight
each state based on how often the agent encounters it while following the current
policy. Unfortunately, this advantage is only heuristic: no one has yet found
a characterization of when these methods even converge, much less a proof
that they end up with reasonable weights. In fact, it is possible to construct
examples [Gor96, Ber96] where some of these methods oscillate forever between
two or more policies with different value functions.

TD-based methods depend on being able to find out the state-visitation
frequencies for each policy. (In fact, it is easy to cause them to diverge by
visiting states at the wrong frequencies.) This fact is both an advantage and
a disadvantage: while it allows TD-based algorithms to take bottleneck states
into account easily and naturally, it means that all known implementations are
based on following trajectories in either the real MDP or a model of it, which
can be an efficiency disadvantage compared to non-TD-based algorithms.

5.4.2 Q-learning

It is difficult to write an incremental algorithm which directly learns the value
function of a Markov decision process. The problem is the location of the
nonlinearity in the Bellman equations: if we write

v^+^ix) = mmE [c(x,a) +.^*\S(x,a))\

then it is easy to get an unbiased estimate of the expectation for a single value
of a, but it is hard to get an unbiased estimate of the minimum over all a,

126

To see why, imagine taking the minimum of two numbers, each corrupted by
zero-mean random noise. The minimum will be below the true minimum if the
noise in either number, is negative, while it will be above the true minimum only
if both numbers have positive noise [TS93].

To solve this problem, we can (as suggested in [Wat89]) break the Bellman
equation into two pieces:

Q(x,a) = E[c(x,a) +/yv(S(x,a))]

v(x) = minQ(x,a)

If we write

Q<'+1>(s,a) = E c(x,a) +rymmQ(t\6(x,a),b)
b

then it is easy to get an unbiased estimate of the expectation: we can sample
c from the distribution of c(x, a) and y from the distribution of S(x, a) and
compute c + 7mint,Q^(y,b).

The Q-learning algorithm stores Q instead of v. On each step it samples a
transition (say from state x to state y under action a at cost c) and updates

Q(x,a) <- (l-T])Q(x,a) +rt(c + 'jmmQit)(y,b))
b

Under appropriate assumptions, [JJS94, Tsi94] prove that Q-learning converges
with probability 1 to the true Q function.

5.5 Other methods

There is a long history of research into Markov decision processes and related
problems, and we have only summarized a fraction of it here. Some interesting
approaches not mentioned above are:

• Methods which assume a particular form of representation for the solution
to the HJB equation, including [DS96] and [Goh93].

• Adaptive control (see, e.g., [SL91]), which attempts to control a system
containing unknown parameters by adapting parameter estimates online.
The adaptation law may be chosen to try to reproduce the observed dy-
namics as accurately as possible (self-tuning control); or, more directly,
it may try to reduce the tracking error between the observed trajectory
and the trajectory predicted by an ideal reference model (model-reference
adaptive control). General convergence guarantees usually require the
model to have some special form, for example linear separately in the
control inputs and the unknown parameters. Adaptive control techniques
may be combined with the robust sliding mode control design described
above. See [OS95] for a modern example of an adaptive control algorithm.

127

• Various neural-net approaches based on "unfolding" a problem by making
a copy of the adjustable parameters for each time step. After unfolding,
all variable dependencies are feedforward, so derivative calculations are
simplified.

5.6 Summary

The research in this thesis extends the state of the art in several ways. To
understand how, we can define the following hierarchy of function fitters. Each
type of function approximation algorithm in the list includes and generalizes
the previous ones.

Exact A degenerate case. Represents a function by storing its value at every
possible input.

Piecewise constant Includes grids and other state aggregation.

Averager As defined in Chapter 2. Includes fc-nearest-neighbor and linear
and multilinear interpolation.

Linear Linear regression with an arbitrary basis, including for example poly-
nomials, sines and cosines, and wavelets.

Generalized linear A linear function with a monotone transfer function ap-
plied to the output. Includes for example logistic regression.

General Everything else. Examples include neural nets and hierarchical mix-
tures of experts.

Before this thesis, the state of the art in learning value functions for gen-
eral MDPs included algorithms that are guaranteed to converge when using
exact or piecewise constant representations, or when using a limited subset of
averagers. It also included algorithms that use general representations and can
work well in practice, but are not guaranteed to converge. And, it included
algorithms that can't handle fully-general MDPs but which can guarantee con-
vergence with more-general representations than averagers, such as TD(A) for
Markov processes, or analytic solution of the HJB equations for some continuous
control problems. Finally, the state of the art in worst-case learning included
performance bounds for some generalized linear functions but not all.

Chapter 2 of this thesis advances the state of the art by defining an algorithm
with guaranteed convergence that can represent value functions with arbitrary
averagers. Chapter 3 advances the state of the art by extending worst-case
regret bounds to cover a larger fraction of generalized linear function approxi-
mators. Finally, Chapter 4 takes the first steps towards an algorithm that can
use arbitrary linear function approximators to represent value functions.

During the course of this thesis, other researchers have (of course) also ad-
vanced the state of the art in finding value functions. Of note are [TV94], which

128

duplicated some of the results in Chapter 2; [SJJ95], which described an on-
line algorithm related to fitted value iteration; [TV97], which extended TD(A)
to handle stopping problems; [MM98], which described a kind of averager that
converges to the exact value function (in the limit of increasing representa-
tional power) when approximating a continuous-time MDP; and [Bai95] and
[BM99], which developed gradient-descent style algorithms that are guaranteed
to converge at least to a local maximum when using (differentiable) general
representations.

129

130

Chapter 6

SUMMARY OF
CONTRIBUTIONS

131

132

Finding approximate value functions for Markov decision processes is im-
portant because it addresses a basic need in machine learning: the need for the
learner to find reasonable sequences of actions despite complicated, probabilistic
environments. This thesis has presented three threads of research all motivated
by the goal of approximating value functions.

The contributions of the research on fitted value iteration are to discover a
class of function approximators that is compatible with fitted value iteration; to
derive convergence and error bounds for fitted value iteration using approxima-
tors in this class; to reduce fitted value iteration to exact value iteration on an
embedded process; and to perform experiments demonstrating that fitted value
iteration is capable of solving Markov decision processes that require complex
pattern recognition.

The contributions of the research on worst-case learning are to provide a
framework in which to prove regret bounds for a wide variety of learning al-
gorithms and to apply this framework to bring together known regret bounds
and prove new ones. While we have not proven any bounds specifically about
the problem of solving Markov decision processes, we expect that the results of
this research will be helpful in proving such bounds, because the information
available to a learner about an MDP is often not in the form of a sample of
independent identically distributed random variables.

The contributions of the research on solving Markov decision processes by
convex programming are to explore the connection among MDPs, convex opti-
mization, and statistical estimation; to propose a new way to design algorithms
for approximating value functions; and to experiment with new algorithms built
according to this design. While the new algorithms do not improve on the best
existing methods for approximating value functions, they do demonstrate that
the design holds the promise of avoiding some of the shortcomings of current
value function approximation methods.

These three threads of research work together to advance the state of the art
in finding approximate solutions to Markov decision processes. Together they
provide a wide variety of new tools for designing algorithms that allow learners
to act appropriately in complicated, uncertain environments.

133

134

Bibliography

[AGMX96] Erling D. Andersen, Jacek Gondzio, Cszaba Meszäros, and Xiaojie
Xu. Implementation of interior point methods for large scale lin-
ear programming. Technical Report 1996.3, University of Geneva,
1996.

[AHW96] Peter Auer, Mark Herbster, and Manfred Warmuth. Exponentially
many local minima for single neurons. In D. Touretzky, M. Mozer,
and M. Hasselmo, editors, Advances in Neural Information Pro-
cessing Systems, volume 8. MIT Press, 1996.

[Atk94] C. G. Atkeson. Using local trajectory optimizers to speed up global
optimization in dynamic programming. In S. J. Hanson, J. D.
Cowan, and C. L. Giles, editors, Advances in Neural Information
Processing Systems, volume 6. Morgan Kaufmann, 1994.

[Bai95] L. C. Baird. Residual algorithms: Reinforcement learning with
function approximation. In Machine Learning (proceedings of the
twelfth international conference), San Francisco, CA, 1995. Morgan
Kaufmann.

[BB96] Steven J. Bradtke and Andrew G. Barto. Linear least-squares algo-
rithms for temporal difference learning. Machine Learning, 22:33-
57, 1996.

[BD59] R. Bellman and S. Dreyfus. Functional approximations and dy-
namic programming. Mathematical Tables and Aids to Computa-
tion, 13:247-251, 1959.

[Bel58] R. Bellman. On a routing problem. Quarterly of Applied Mathe-
matics, 16(l):87-90, 1958.

[Bel61] R. Bellman. Adaptive Control Processes; A Guided Tour, Princeton
University Press, 1961.

[Ber76] Dimitri P. Bertsekas. Dymanic Programming and Stochastic Con-
trol, Academic Press, 1976.

135

[Ber95] D. P. Bertsekas. Dynamic Programming and Optimal Control.
Athena Scientific, Massachusetts, 1995.

[Ber96] D. P. Bertsekas. Talk, 1996. Given at the NSF workshop on rein-
forcement learning.

[BI96] Dimitri Bertsekas and Sergey Ioffe. Temporal differences-based
policy iteration and applications in neuro-dynamic programming.
Technical Report LIDS-P-2349, MIT, 1996.

[BKK63] R. Bellman, R. Kalaba, and B. Kotkin. Polynomial approximation
— a new computational technique in dynamic programming: allo-
cation processes. Mathematics of Computation, 17:155-161, 1963.

[Bla65] D. Blackwell. Discounted dynamic programming. Annals of Math-
ematical Statistics, 36:226-235, 1965.

[BM95] J. A. Boyan and A. W. Moore. Generalization in reinforcement
learning: safely approximating the value function. In G. Tesauro
and D. Touretzky, editors, Advances in Neural Information Pro-
cessing Systems, volume 7. Morgan Kaufmann, 1995.

[BM99] Leemon Baird and Andrew Moore. Gradient descent for general
reinforcement learning. In M. S. Kearns, S. A. Solla, and D. A.
Cohn, editors, Advances in Neural Information Processing Systems,
volume 11. MIT Press, 1999.

[BN78] Ole Barndorff-Nielsen. Information and exponential families in sta-
tistical theory. Wiley, New York, 1978.

[BT89] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Com-
putation: Numerical Methods. Prentice Hall, 1989.

[CB96] R. H. Crites and A. G. Barto. Improving elevator performance
using reinforcement learning. In D. Touretzky, M. Mozer, and
M. Hasselmo, editors, Advances in Neural Information Processing
Systems, volume 8. MIT Press, 1996.

[CBFH+95] Nicolö Cesa-Bianchi, Yoav Freund, David P. Helmboldt, David
Haussler, Robert E. Schapire, and Manfred K. Warmuth. How to
use expert advice. Technical Report UCSC-CRL-95-19, University
of California Santa Cruz, 1995.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. McGraw-Hill, 1990.

[CS95] M. Cannon and J.-J. E. Slotine. Space-frequency localized ba-
sis function networks for nonlinear system estimation and control.
Neurocomputing, 9(3), 1995.

136

[CT89] C.-S. Chow and J. N. Tsitsiklis. An optimal multigrid algorithm
for discrete-time stochastic control. Technical Report P-135, Center
for Intelligent Control Systems, 1989.

[Dav96] S. Davies. Multidimensional triangulation and interpolation for re-
inforcement learning. In D. Touretzky, M. Mozer, and M. Hasselmo,
editors, Advances in Neural Information Processing Systems, vol-
ume 8. MIT Press, 1996.

[Day92] P. Dayan. The convergence of TD(A) for general lambda. Machine
Learning, 8(3-4):341-362, 1992.

[DS96] P. Dayan and S. P. Singh. Improving policies without measuring
merits. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Ad-
vances in Neural Information Processing Systems, volume 8. MIT
Press, 1996.

[DY79] Persi Piaconis and Donald Ylvisaker. Conjugate priors for expo-
nential families. Annals of Statistics, 7(2):269-281, 1979.

[FF62] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[Fre96] Yoav Freund. Predicting a binary sequence almost as well as the
optimal biased coin. In Proc. 9th Ann. Workshop on Computational
Learning Theory, pages 89-98. ACM Press, 1996.

[G077] D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Meth-
ods: Theory and Applications. SIAM, Philadelphia, 1977.

[Goh93] C. J. Goh. On the nonlinear optimal regulator problem. Automat-
ica, 29(3):751-756, 1993.

[Gor95a] G. J. Gordon. Stable function approximation in dynamic program-
ming. Technical Report CS-95-103, CMU, 1995.

[Gor95b] G. J. Gordon. Stable function approximation in dynamic program-
ming. In Machine Learning (proceedings of the twelfth international
conference), San Francisco, CA, 1995. Morgan Kaufmann.

[Gor96] G. J. Gordon. Chattering in SARSA(A). Internal report, 1996.
CMU Learning Lab.

[Gor99] Geoffrey J. Gordon. Regret bounds for prediction problems. In
Proc. 12th Ann. Workshop on Computational Learning Theory.
ACM Press, 1999.

[HKW98] David Haussler, Jyrki Kivinen, and Manfred Warmuth. Sequen-
tial prediction of individual sequences under general loss functions.
IEEE Transactions on Information Theory, 1998. To appear.

137

[JJS94] T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence
of stochastic iterative dynamic programming algorithms. Neural
Computation, 6(6):1185-1201, 1994.

[KW96] Jyrki Kivinen and Manfred K. Warmuth. Relative loss bounds for
multidimensional regression problems. In D. Touretzky, M. Mozer,
and M. Hasselmo, editors, Advances in Neural Information Pro-
cessing Systems, volume 8. MIT Press, 1996.

[KW97] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradi-
ent versus gradient descent for linear predictors. Information and
Computation, 132(1):1—63, 1997. Preliminary version appeared as
tech report UCSC-CRL-94-16; extended abstract appeared in 27th
STOC.

[LW92] Nick Littlestone and Manfred Warmuth. The weighted majority
algorithm. Technical Report UCSC-CRL-91-28, University of Cal-
ifornia Santa Cruz, 1992.

[MM98] Remi Munos and Andrew Moore. Barycentric interpolators for
continuous space & time reinforcement learning. In M. S. Kearns,
S. A. Solla, and D. A. Cohn, editors, Advances in Neural Informa-
tion Processing Systems, volume 10, Cambridge, MA, 1998. MIT
Press.

[MN83] P. McCullagh and J. A. Neider. Generalized Linear Models. Chap-
man & Hall, London, 2nd edition, 1983.

[Moo94] A. W. Moore. The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state spaces. In S. J.
Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neu-
ral Information Processing Systems, volume 6. Morgan Kaufmann,
1994.

[OR70] James Ortega and W. C. Rheinboldt. Iterative solution of nonlinear
equations in several variables. Academic Press, New York, 1970.

[Roc70] R. Tyrell Rockafellar. Convex Analysis. Princeton University Press,
New Jersey, 1970.

[Ros83] Sheldon Ross. Introduction to Stochastic Dynamic Programming.
Academic Press, 1983.

[Sab93] P. Sabes. Approximating Q-values with basis function representa-
tions. In Proceedings of the Fourth Connectionist Models Summer
School, Hillsdale, NJ, 1993. Lawrence Erlbaum.

[Sam59] A. L. Samuels. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3(3):210-229,
1959.

138

[SJJ95] S- P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learn-
ing with soft state aggregation. In G. Tesauro and D. Touretzky,
editors, Advances in Neural Information Processing Systems, vol-
ume 7. Morgan Kaufmann, 1995.

[SL91] J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice-
Hall, New Jersey, 1991.

[S091] A. Stuart and J. K. Ord. Kendall's Advanced Theory of Statistics.
Oxford University Press, New York, 5th edition, 1991.

[Sut88] R. S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 3(1):9~44, 1988.

[SY94] S. P. Singh and R. C. Yee. Technical note: an upper bound on the
loss from approximate optimal-value functions. Machine Learning,
16(3):227-233, 1994.

[Tes90] G. Tesauro. Neurogammon: a neural network backgammon pro-
gram. In IJCNN Proceedings III, pages 33-39, 1990.

[Tes94] G. Tesauro. TD-Gammon, a self-teaching backgammon program,
achieves master-level play. Neural Computation, 6:215-219, 1994.

[TS93] S. Thrun and A. Schwartz. Issues in using function approxima-
tion for reinforcement learning. In Proceedings of the Fourth Con-
nectionist Models Summer School, Hillsdale, NJ, 1993. Lawrence
Erlbaum.

[Tsi94] J, N, Tsitsiklis. Asynchronous stochastic approximation and Q-
learning. Machine Learning, 16(3);185-202, 1994.

[TV94] J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large-
scale dynamic programming. Technical Report P-2277, Laboratory
for Information and Decision Systems, 1994.

[TV96] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference
learning with function approximation. Technical Report LIDS-P-
2322, MIT, 1996.

[TV97] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov
processes: Hubert space theory, approximation algorithms, and an
application to pricing financial derivatives. Technical Report LIDS-
P-2389, MIT, 1997. To appear in IEEE Transactions on Automatic
Control.

[TZ93] Michael A. Trick and Stanley E. Zin. A linear programming
approach to solving stochastic dynamic programs. Unpublished
manuscript, 1993,

139

[TZ95] Michael A. Trick and Stanley E. Zin. Spline approximations to
value functions: a linear programming approach. Unpublished
manuscript, 1995.

[TZ97] Michael A. Trick and Stanley E. Zin. Spline approximations to
value functions: A linear programming approach. Macroeconomic
Dynamics, 1:255-277, 1997.

[Van94] Robert Vanderbei. LOQO: An interior point code for quadratic
programming. Technical Report SOR 94-15, Princeton, 1994. Re-
vised 11/30/98.

[Vov90] Volodimir Vovk. Aggregating strategies. In Proc. 3rd Ann. Work-
shop on Computational Learning Theory, pages 371-383. Morgan
Kaufmann, 1990.

[Wat89] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,
King's College, Cambridge, England, 1989.

[Wil92] Ronald J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine Learning,
8:229, 1992.

[YSS97] Y. Yang, E. D. Sontag, and H. J. Sussman. Global stabilization of
linear discrete-time systems with bounded feedback. Systems and
Control Letters, 1997. To appear.

140

